【題目】一只不透明袋子中裝有2個(gè)紅球、1個(gè)黃球,這些球除顏色外都相同.小明攪勻后從中任意摸出一個(gè)球,記錄顏色后放回、攪勻,再?gòu)闹腥我饷?個(gè)球.則兩次摸出的球都是黃球的概率是

【答案】
【解析】解:列樹(shù)狀圖如下:

由圖可知,共有9種情況,其中兩次摸到黃球的情況有1種,

所以,P(兩次摸到黃球)=

所以答案是:

【考點(diǎn)精析】本題主要考查了列表法與樹(shù)狀圖法和概率公式的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹(shù)狀圖法求概率;一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、F、C、E在直線l上(F、C之間不能直接測(cè)量),點(diǎn)ADl異側(cè),測(cè)得ABDE,ABDE,AD

(1)求證:△ABC≌△DEF;

(2)BE=10m,BF=3m,求FC的長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,C為x軸正半軸上的一個(gè)動(dòng)點(diǎn)(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點(diǎn).

(1)如圖,當(dāng)C點(diǎn)在x軸上運(yùn)動(dòng)時(shí),設(shè)AC=x,請(qǐng)用x表示線段AD的長(zhǎng);
(2)隨著C點(diǎn)的變化,直線AE的位置變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點(diǎn)F,當(dāng)點(diǎn)C坐標(biāo)為多少時(shí)直線EF∥直線BO?這時(shí)OF和直線BO的位置關(guān)系如何?請(qǐng)給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳,經(jīng)過(guò)測(cè)試:同時(shí)開(kāi)放1個(gè)大餐廳、2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開(kāi)放2個(gè)大餐廳,1個(gè)小餐廳,可供2280名學(xué)生就餐.

1)求1個(gè)大餐廳,1個(gè)小餐廳分別可供多少名 就餐?

2)若7個(gè)餐廳同時(shí)開(kāi)放,能否供全校的5300名學(xué)生就餐?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果兩個(gè)角的差的絕對(duì)值等于90°,就稱這兩個(gè)角互為垂角,其中一個(gè)角叫另一個(gè)角的垂角.

(1)如圖1O為直線AB上一點(diǎn),∠AOC90°,∠EOD90°,直接寫出圖中∠BOE的垂角為   ;

(2)如果一個(gè)角的垂角等于這個(gè)角的補(bǔ)角的,求這個(gè)角的度數(shù);

(3)如圖2O為直線AB上一點(diǎn),∠AOC75°,將整個(gè)圖形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)n°(0n180),直線AB旋轉(zhuǎn)到A1B1,OC旋轉(zhuǎn)到OC1,作射線OP,使∠BOPBOB′,試直接寫出當(dāng)n   時(shí),∠POA1與∠AOC1互為垂角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若兩個(gè)有理數(shù)a,b滿足abab,則稱a,b互為特征數(shù).

13 互為特征數(shù);

2)正整數(shù)n (n1)的特征數(shù)為 ;(用含n的式子表示)

3)若mn互為特征數(shù),且mmn=-2,nmn3,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)是4,點(diǎn)PAD邊的中點(diǎn),點(diǎn)E是正方形邊上的一點(diǎn),若△PBE是等腰三角形,則腰長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從A地到B地的公路需經(jīng)過(guò)C地,圖中AC=6千米,∠CAB=15°,∠CBA=30°.因城市規(guī)劃的需要,將在A,B兩地之間修建一條筆直的公路.

(1)求改直后的公路AB的長(zhǎng);
(2)問(wèn)公路改直后該段路程比原來(lái)縮短了多少千米?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D是∠ABC內(nèi)部一點(diǎn),DEABBC于點(diǎn)E.請(qǐng)你畫出射線DF,并且DFBC;判斷∠B與∠EDF的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案