【題目】現(xiàn)有A、B兩個不透明袋子,分別裝有3個除顏色外完全相同的小球.其中,A袋裝有2個白球,1個紅球;B袋裝有2個紅球,1個白球.
(1)將A袋搖勻,然后從A袋中隨機取出一個小球,則摸出小球是白色的概率為 ;
(2)小華和小林商定了一個游戲規(guī)則:從搖勻后的A,B兩袋中隨機摸出一個小球,摸出的這兩個小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝.請用列表或畫出樹狀圖的方法說明這個游戲規(guī)則對雙方是否公平.
【答案】(1);(2)見解析,這個游戲規(guī)則對雙方不公平
【解析】
(1)根據(jù)概率公式計算即可;(2)先列表表示所有的可能性,其中顏色不相同的結(jié)果有4種,顏色相同的結(jié)果有5種,再根據(jù)概率公式計算即可.
(1)∵ 共有3種等可能結(jié)果,而摸出白球的結(jié)果有2種,
∴P(摸出白球)=;
(2)根據(jù)題意,列表如下:
AB | 紅1 | 紅2 | 白 |
白1 | (白1,紅1) | (白1,紅2) | (白1,白) |
白2 | (白2,紅1) | (白2,紅2) | (白2,白) |
紅 | (紅,紅1) | (紅,紅2) | (白1,白) |
由上表可知,共有9種等可能結(jié)果,其中顏色不相同的結(jié)果有4種,顏色相同的結(jié)果有5種.
∴P(顏色不相同)= ,P(顏色相同)=
∵<,∴這個游戲規(guī)則對雙方不公平.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′),連接CC′,若∠CC′B′=33°,則∠B的大小是( )
A. 33° B. 45° C. 57° D. 78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,若∠B=60°,點E、F分別在AB、AD上,且BE=AF,則∠AEC+∠AFC的度數(shù)等于( )
A.120°B.140°C.160°D.180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣(x﹣m)2+4(m>0)的頂點為A,與直線x=相交于點B,點A關(guān)于直線x=的對稱點為C.
(1)若拋物線y=﹣(x﹣m)2+4(m>0)經(jīng)過原點,求m的值.
(2)點C的坐標(biāo)為 .用含m的代數(shù)式表示點B到直線AC的距離為 .
(3)將y=﹣(x﹣m)2+4(m>0,且x≥)的函數(shù)圖象記為圖象G,圖象G關(guān)于直線x=的對稱圖象記為圖象H.圖象G與圖象H組合成的圖象記為圖象M.
①當(dāng)圖象M與x軸恰好有三個交點時,求m的值.
②當(dāng)△ABC為等腰直角三角形時,直接寫出圖象M所對應(yīng)的函數(shù)值小于0時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=(x+m)2+k的圖象,其頂點坐標(biāo)為M(1,﹣4)
(1)求出圖象與x軸的交點A、B的坐標(biāo);
(2)在二次函數(shù)的圖象上是否存在點P,使S△PAB=S△MAB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(1,0),C(0,2).
(1)求拋物線的表達式;
(2) 請你在拋物線的對稱軸上找點P,使△PCD是以CD為腰的等腰三角形,所有符合條件的點P的坐標(biāo)分別為 ;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線交正半軸于點,將拋物線先向右平移3個單位,再向上平移3個單位得到拋物線,與交于點,直線交于點.
(1)求拋物線的解析式;
(2)點是拋物線上間的一點,作軸交拋物線于點,連接,.設(shè)點的橫坐標(biāo)為,當(dāng)為何值時,使的面積最大,并求出最大值;
(3)如圖2,將直線向下平移,交拋物線于點,,交拋物線于點,,則的值是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點E,連接AC、OC、BC
(1)求證:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。
A. 2 B. 3 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com