【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標為t.
(1)求拋物線的表達式;
(2)設(shè)拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標.
【答案】(1)y=﹣x2+2x+3.(2)當t=2時,點M的坐標為(1,6);當t≠2時,不存在,理由見解析;(3)y=﹣x+3;P點到直線BC的距離的最大值為,此時點P的坐標為(,).
【解析】
(1)由點A、B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;
(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據(jù)點C的坐標利用平行四邊形的性質(zhì)可求出點P、M的坐標;當t≠2時,不存在,利用平行四邊形對角線互相平分結(jié)合CE≠PE可得出此時不存在符合題意的點M;
(3)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點P的坐標可得出點F的坐標,進而可得出PF的長度,再由三角形的面積公式即可求出S關(guān)于t的函數(shù)表達式;
②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標即可得出結(jié)論.
(1)將A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,
得,解得:,
∴拋物線的表達式為y=﹣x2+2x+3;
(2)在圖1中,連接PC,交拋物線對稱軸l于點E,
∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,
∴拋物線的對稱軸為直線x=1,
當t=2時,點C、P關(guān)于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,
∵拋物線的表達式為y=﹣x2+2x+3,
∴點C的坐標為(0,3),點P的坐標為(2,3),
∴點M的坐標為(1,6);
當t≠2時,不存在,理由如下:
若四邊形CDPM是平行四邊形,則CE=PE,
∵點C的橫坐標為0,點E的橫坐標為0,
∴點P的橫坐標t=1×2﹣0=2,
又∵t≠2,
∴不存在;
(3)①在圖2中,過點P作PF∥y軸,交BC于點F.
設(shè)直線BC的解析式為y=mx+n(m≠0),
將B(3,0)、C(0,3)代入y=mx+n,
得,解得:,
∴直線BC的解析式為y=﹣x+3,
∵點P的坐標為(t,﹣t2+2t+3),
∴點F的坐標為(t,﹣t+3),
∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,
∴S=PFOB=﹣t2+t=﹣(t﹣)2+;
②∵﹣<0,
∴當t=時,S取最大值,最大值為.
∵點B的坐標為(3,0),點C的坐標為(0,3),
∴線段BC=,
∴P點到直線BC的距離的最大值為,
此時點P的坐標為(,).
科目:初中數(shù)學 來源: 題型:
【題目】拋物線與x軸交于A,B兩點(點B在點A的右側(cè)),且A,B兩點的坐標分別為(-2,0),(8,0),與y軸交于點C(0,-4),連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設(shè)點P的坐標為(m,0),過點P作x軸的垂線L交拋物線于點Q,交BD于點M.
(1)求拋物線的解析式;
(2)當點P在線段OB上運動時,試探究m為何值時,四邊形CQMD是平行四邊形?
(3)位于第四象限內(nèi)的拋物線上是否存在點N,使得△BCN的面積最大?若存在,求出N點的坐標,及△BCN面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在平面直角坐標系中,雙曲線與直線都經(jīng)過點.
(1)求與的值;
(2)此雙曲線又經(jīng)過點,點是軸的負半軸上的一點,且點到軸的距離是2 ,聯(lián)結(jié)、、,
①求的面積;
②點在軸上,為等腰三角形,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.
(1)求證:∠B=2∠PCA.
(2)求證:PA是⊙O的切線;
(3)若點B位于直徑CD的下方,且CD平分∠ACB,試判斷此時AE與BE的大小關(guān)系,并說明由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接五一黃金周的購物高峰,某品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:
運動鞋價格 | 甲 | 乙 |
進價(元/雙) | m | m﹣30 |
售價(元/雙) | 240 | 160 |
已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.
(1)求m的值;
(2)若購進乙種運動鞋x(雙),要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于13000元且不超過13500元,問該專賣店有幾種進貨方案;
(3)在(2)的條件下求出總利潤y(元)與購進乙種運動鞋x(雙)的函數(shù)關(guān)系式,并用關(guān)系式說明哪種方案的利潤最大,最大利潤是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com