【題目】如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心,OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關系,并說明理由;
(2)求證:BC2=2CDOE;
(3)若,求OE的長.
【答案】(1)DE為⊙O的切線,理由見解析;(2)證明見解析;(3)OE =.
【解析】試題分析:(1)連接OD,BD,由直徑所對的圓周角是直角得到∠ADB為直角,可得出△BCD為直角三角形,E為斜邊BC的中點,由直角三角形斜邊上的中線等于斜邊的一半,得到CE=DE,從而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中兩銳角互余,從而可得∠ADO與∠CDE互余,可得出∠ODE為直角,即DE垂直于半徑OD,可得出DE為⊙O的切線;
(2)由已知可得OE是△ABC的中位線,從而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根據相似三角形的對應邊的比相等,即可證得;
(3)在直角△ABC中,利用勾股定理求得AC的長,根據三角形中位線定理OE的長即可求得.
試題解析:(1)DE為⊙O的切線,理由如下:
連接OD,BD,
∵AB為⊙O的直徑,
∴∠ADB=90°,
在Rt△BDC中,E為斜邊BC的中點,
∴CE=DE=BE=BC,
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,
∴∠C+∠A=90°,
∴∠ADO+∠CDE=90°,
∴∠ODE=90°,
∴DE⊥OD,又OD為圓的半徑,
∴DE為⊙O的切線;
(2)∵E是BC的中點,O點是AB的中點,
∴OE是△ABC的中位線,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴,即BC2=ACCD.
∴BC2=2CDOE;
(3)解:∵cos∠BAD=,
∴sin∠BAC=,
又∵BE=,E是BC的中點,即BC=,
∴AC=.
又∵AC=2OE,
∴OE=AC=.
科目:初中數學 來源: 題型:
【題目】如圖所示,OB是∠AOC的平分線,OD是∠COE的平分線.
(1)若∠AOB=50°,∠DOE=35°,求∠BOD的度數;
(2)若∠AOE=160°,∠COD=40°,求∠AOB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設備共10臺.已知用90萬元購買A型號的污水處理設備的臺數與用75萬元購買B型號的污水處理設備的臺數相同,每臺設備價格及月處理污水量如下表所示:
污水處理設備 | A型 | B型 |
價格(萬元/臺) | m | m-3 |
月處理污水量(噸/臺) | 220 | 180 |
(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是一個長為2a ,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形.
(1)圖2的陰影部分的正方形的邊長是 ______.
(2)用兩種不同的方法求圖中陰影部分的面積.
(方法1)= _____________;
(方法2)=______________;
(3)觀察如圖2,寫出(a+b)2,(a-b)2,ab這三個代數式之間的等量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知(如圖),點分別在邊上,且四邊形是菱形
(1)請使用直尺與圓規(guī),分別確定點的具體位置(不寫作法,保留畫圖痕跡);
(2)如果,點在邊上,且滿足,求四邊形的面積;
(3)當時,求的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在梯形中,,點在直線上,聯(lián)結,過點作的垂線,交直線與點,
(1)如圖1,已知,:求證:;
(2)已知:,
① 當點在線段上,求證:;
② 當點在射線上,①中的結論是否成立?如果成立,請寫出證明過程;如果不成立,簡述理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A和B兩個小機器人,自甲處同時出發(fā)相背而行,繞直徑為整數米的圓周上運動,15分鐘內相遇7次,如果A的速度每分鐘增加6米,則A和B在15分鐘內相遇9次,問圓周直徑至多是多少米?至少是多少米?(取π=3.14)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著人們生活水平的提高,家用轎車越來越多地進入家庭,小明家中買了一輛小轎車,他連續(xù)記錄了天中每天行駛的路程(如下表),以為標準,多于的記為“”,不足的記為“”,剛好的記為“”.
第一天 | 第二天 | 第三天 | 第四天 | 第五天 | 第六天 | 第七天 | |
路程 |
(1)請求出這天中平均每天行駛多少千米?
(2)若每行駛需用汽油升,汽油價元/升,計算小明家這天的汽油費用大約是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰三角形ABC中,AB=AC,點D是AC上一點。點E在BD的延長線上,且AB=AE,AF平分∠CAE交DE于點F,連接CF
(1)如圖1,找到與∠CFB相等的角,并證明
(2)如圖2,如當∠ABC=60°,AF=m,EF=n時,求FB的長(用含m、n的式子表示)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com