【題目】給出如下定義:如果兩個不相等的有理數(shù)a,b滿足等式a-b=ab.那么稱a,b是“關(guān)聯(lián)有理數(shù)對”,記作(a,b).如:因為,.所以數(shù)對(3,)是“關(guān)聯(lián)有理數(shù)對”.
(1)在數(shù)對①(1,)、②(-1,0)、③(,)中,是“關(guān)聯(lián)有理數(shù)對”的是____________(只填序號);
(2)若(m,n)是“關(guān)聯(lián)有理數(shù)對”,則(-m,-n)___________“關(guān)聯(lián)有理數(shù)對”(填“是”或“不是”);
(3)如果兩個有理數(shù)是一對“關(guān)聯(lián)有理數(shù)對”,其中一個有理數(shù)是5,求另一個有理數(shù).
【答案】(1)①③;(2)不是;(3)或.
【解析】
(1)根據(jù)“關(guān)聯(lián)有理數(shù)對”的定義逐個判斷即可;
(2)根據(jù)(m,n)是“關(guān)聯(lián)有理數(shù)對”可得m-n=mn,然后根據(jù)“關(guān)聯(lián)有理數(shù)對”的定義判斷(-m,-n)即可;
(3)設(shè)另一個有理數(shù)是x,分類討論,根據(jù)“關(guān)聯(lián)有理數(shù)對”的定義分別列方程求解即可.
解:(1)∵,,∴①(1,)是“關(guān)聯(lián)有理數(shù)對”,
∵-1-0=-1,-1×0=0,∴②(-1,0)不是“關(guān)聯(lián)有理數(shù)對”,
∵,,∴③(,)是“關(guān)聯(lián)有理數(shù)對”,
故答案為:①③;
(2)∵(m,n)是“關(guān)聯(lián)有理數(shù)對”,
∴m-n=mn,
而-m-(-n)=n-m,-m×(-n)=mn,
∴(-m,-n)不是“關(guān)聯(lián)有理數(shù)對”,
故答案為:不是;
(3)設(shè)另一個有理數(shù)是x,
當(x,5)是“關(guān)聯(lián)有理數(shù)對”時,則x-5=5x,
解得:,
當(5,x)是“關(guān)聯(lián)有理數(shù)對”時,則5-x=5x,
解得:,
故另一個有理數(shù)是或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第 n個圖形需要黑色棋子的個數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知兩個共一個頂點的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點,連接MB、ME.
(1)如圖1,當CB與CE在同一直線上時,求證:MB∥CF;
(2)如圖1,若CB=a,CE=2a,求BM,ME的長;
(3)如圖2,當∠BCE=45°時,求證:BM=ME.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量AB=25cm,BC=54cm,CD=30cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點M、N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
元且期間,我市各大商場掀起購物狂湖,現(xiàn)有甲、乙、丙三個商場開展的促銷活動如表所示:
商場 | 優(yōu)惠活動 |
甲 | 全場按標價的折銷售 |
乙 | 實行“滿送元的購物券”的優(yōu)惠,購物券可以在再購買時沖抵現(xiàn)金 (如:顧客購衣服元, 贈券元,再購買褲子計可沖抵現(xiàn)金,不再送券) |
丙 | 實行“滿元減元”的優(yōu)惠(如:某顧客購物元,他只需付款元) |
根據(jù)以上活動信息,解決以下問題:
(1)三個 商場同時出售一件標價元的上衣和一條標價元的褲子,王阿姨想買這一套衣服,她應(yīng)該選擇哪家商場更劃算?
(2)黃 先生發(fā)現(xiàn)在甲、乙商場同時出售一件標價元的上衣和一條標價多元的褲子,最后付款也一樣,諸問這條褲子的標價是多少元?
(3)丙商場又推出 “先打折”,“再滿減元”的活動,張先生買了一件標價為元的上衣,張先生發(fā)現(xiàn)竟然比沒打折前多付了元錢,問丙商場先打了多少折后再參加活動?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點A(4,2),與y軸的負半軸交于點B,且OB=6.
(1)求函數(shù)y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點P,使得S△POC=9.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖像與正比例函數(shù)y=kx的圖像交于點M,
(1)求正比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖像寫出使正比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;
(3)求ΔMOP的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(-1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,分別得到點A,B的對應(yīng)點C,D.連接AC,BD.
(1)寫出點C,D的坐標及四邊形ABDC的面積.
(2)在y軸上是否存在一點P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在,求出點P的坐標,若不存在,試說明理由;
(3)點Q是線段BD上的動點,連接QC,QO,當點Q在BD上移動時(不與B,D重合),給出下列結(jié)論:①的值不變;②的值不變,其中有且只有一個正確,請你找出這個結(jié)論并求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售櫻桃,已知櫻桃的進價為15元/千克,如果售價為20元/千克,那么每天可售出250千克,如果售價為25元/千克,那么每天可售出200千克,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價x(元/千克)之間 存在一次函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若該超市每天要獲得利潤810元,同時又要讓消費者得到實惠,則售價x應(yīng)定于多少元?
(3)若櫻桃的售價不得高于28元/千克,請問售價定為多少時,該超市每天銷售櫻桃所獲的利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com