【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對(duì)知識(shí)拓展,體育特長、藝術(shù)特長和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計(jì)圖中m的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在被調(diào)查的學(xué)生中,隨機(jī)抽一人,抽到選“體育特長類”或“藝術(shù)特長類”的學(xué)生的概率是多少?
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動(dòng)類”課程每班安排20人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級(jí)比較合理?
【答案】(1)20(2) (3)開設(shè)10個(gè)“實(shí)驗(yàn)活動(dòng)類”課程的班級(jí)數(shù)比較合理
【解析】分析:(1)根據(jù)C類人數(shù)有15人,占總?cè)藬?shù)的25%可得出總?cè)藬?shù),求出A類人數(shù),進(jìn)而可得出結(jié)論;
(2)直接根據(jù)概率公式可得出結(jié)論;
(3)求出“實(shí)踐活動(dòng)類”的總?cè)藬?shù),進(jìn)而可得出結(jié)論.
詳解:(1)總?cè)藬?shù)=15÷25%=60(人).A類人數(shù)=60﹣24﹣15﹣9=12(人).
∵12÷60=0.2=20%,∴m=20.
條形統(tǒng)計(jì)圖如圖;
(2)抽到選“體育特長類”或“藝術(shù)特長類”的學(xué)生的概率==;
(3)∵800×25%=200,200÷20=10,
∴開設(shè)10個(gè)“實(shí)驗(yàn)活動(dòng)類”課程的班級(jí)數(shù)比較合理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“分組合作學(xué)習(xí)”已成為推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要措施.某中學(xué)從全校學(xué)生中隨機(jī)抽取部分學(xué)生對(duì)“分組合作學(xué)習(xí)”實(shí)施后的學(xué)習(xí)興趣情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)圖如下:
請(qǐng)結(jié)合圖中信息解答下列問題:
(1)求出隨機(jī)抽取調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的條形統(tǒng)計(jì)圖;
(3)分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比和對(duì)應(yīng)扇形的圓心角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴(yán)重,交警對(duì)人民路某雷達(dá)測(cè)速區(qū)檢測(cè)到的一組汽車的時(shí)速數(shù)據(jù)進(jìn)行整理(速度在30﹣40含起點(diǎn)值30,不含終點(diǎn)值40),得到其頻數(shù)及頻率如表:
數(shù)據(jù)段 | 頻數(shù) | 頻率 |
30﹣40 | 10 | 0.05 |
40﹣50 | 36 | c |
50﹣60 | a | 0.39 |
60﹣70 | b | d |
70﹣80 | 20 | 0.10 |
總計(jì) | 200 | 1 |
(1)表中a、b、c、d分別為:a= ; b= ; c= ; d=
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果汽車時(shí)速不低于60千米即為違章,則違章車輛共有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(-4,m),B(-1,n),平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,A, B是直線l上的兩點(diǎn),點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn)為M,連接交AD于F點(diǎn).
(1)若,如圖,
①依題意補(bǔ)全圖形;
②判斷MF與FC的數(shù)量關(guān)系是 ;
(2)如圖,當(dāng)時(shí),,CD的延長線相交于點(diǎn)E,取E的中點(diǎn)H,連結(jié)HF. 用等式表示線段CE與AF的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點(diǎn),F是線段BC上的動(dòng)點(diǎn),將△EBF沿EF所在直線折疊得到△EB′F,連接B′D,則B′D的最小值是( 。
A. 2﹣2B. 6C. 2﹣2D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三邊為邊在BC的同一側(cè)分別作三個(gè)等邊三角形,即△ABD、△BCE、△ACF,請(qǐng)回答下列問題:
(1)四邊形ADEF是什么四邊形?
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是矩形?
(3)當(dāng)△ABC滿足什么條件時(shí),以A、D、E、F為頂點(diǎn)的四邊形不存在?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn)、,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿軸負(fù)方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線方向以每秒2個(gè)單位長度的速度運(yùn)動(dòng),過點(diǎn)作于點(diǎn),連接、,以、為鄰邊構(gòu)造平行四邊形,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為 s.
(1)當(dāng)點(diǎn)在線段上時(shí),用含的代數(shù)式表示、的長.
(2)在運(yùn)動(dòng)過程中,①當(dāng)點(diǎn)落在軸上時(shí),求出滿足條件的的值;②當(dāng)點(diǎn)落在內(nèi)部(不包括邊界)時(shí),直接寫出的取值范圍.
(3)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),連接,在運(yùn)動(dòng)過程中,是否存在某時(shí)刻使過、、三點(diǎn)的圓與三邊中的一條邊相切?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,正方形OABC的頂點(diǎn)A,C分別在x軸,y軸上,OA=3.
(1)求直線OB的表達(dá)式;
(2)若直線y=x+b與該正方形有兩個(gè)公共點(diǎn),請(qǐng)直接寫出b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com