【題目】如圖,在△ABC中,∠ACB=90°,BC=6,分別以點(diǎn)A和點(diǎn)C為圓心,以相同的長(zhǎng)(大于 AC)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N , 作直線MN交AB于點(diǎn)D , 交AC于點(diǎn)E , 連接CD . 則DE的長(zhǎng)為 .
【答案】3
【解析】解:∵DE是AC的垂直平分線,∴AE=EC , DE∥BC , ∠A=∠DCE , ∴DE是△ABC的中位線,
∴DE=BC=3.
所以答案是3.
【考點(diǎn)精析】掌握三角形的“三線”是解答本題的根本,需要知道1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對(duì)邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙從筆試、面試、體能三個(gè)方面進(jìn)行量化考核.甲、乙、丙各項(xiàng)得分如下表:
筆 試 | 面 試 | 體 能 | |
甲 | 85 | 80 | 75 |
乙 | 80 | 90 | 73 |
丙 | 83 | 79 | 90 |
(1)根據(jù)三項(xiàng)得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計(jì)入總分(不計(jì)其他因素條件),請(qǐng)你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)D,E,F(xiàn)分別是邊AB,BC,AC的中點(diǎn),點(diǎn)M是射線EC上的一個(gè)動(dòng)點(diǎn),作等邊△DMN,使△DMN與△ABC在BC邊同側(cè),連接NF.
(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)C重合時(shí),直接寫出線段FN與線段EM的數(shù)量關(guān)系;
(2)當(dāng)點(diǎn)M在線段EC上(點(diǎn)M與點(diǎn)E,C不重合)時(shí),在圖2中依題意補(bǔ)全圖形,并判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
(3)連接DF,直線DM與直線AC相交于點(diǎn)G,若△DNF的面積是△GMC面積的9倍,AB=8,請(qǐng)直接寫出線段CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)A、C分別在直線a、b上,且a∥b , ∠1=65°,則∠2的度數(shù)為
A.65°
B.55°
C.35°
D.25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(0,4),B(2,0).
(1)求直線AB的函數(shù)解析式;
(2)已知點(diǎn)M是線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),以M為頂點(diǎn)的拋物線y=(x﹣m)2+n與線段OA交于點(diǎn)C.
①求線段AC的長(zhǎng);(用含m的式子表示)
②是否存在某一時(shí)刻,使得△ACM與△AMO相似?若存在,求出此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于點(diǎn)D,DE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,DF⊥AC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中,正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD是AB的中垂線,垂足為D,DE⊥AC于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)求證:DE=DF;
(2)若線段CE的長(zhǎng)為3 cm,BC的長(zhǎng)為4 cm,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車交易市場(chǎng)為了解二手轎車的交易情況,將本市場(chǎng)去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時(shí)間為標(biāo)準(zhǔn)分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計(jì)圖(圖都不完整).
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)該汽車交易市場(chǎng)去年共交易二手轎車 輛.
(2)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整.(畫圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù))
(3)在扇形統(tǒng)計(jì)圖中,D類二手轎車交易輛數(shù)所對(duì)應(yīng)扇形的圓心角為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,連接EB、FD,交點(diǎn)為G.
(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),EB和FD的數(shù)量關(guān)系是 ;
(2)當(dāng)四邊形ABCD為矩形時(shí)(如圖2),EB和FD具有怎樣的數(shù)量關(guān)系?請(qǐng)加以證明;
(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過程中,∠EGD是否發(fā)生變化?如果改變,請(qǐng)說明理由;如果不變,請(qǐng)?jiān)趫D3中求出∠EGD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com