【題目】如圖,在中,,,是的中線,是的角平分線,交的延長線于點,則的長為_______.
【答案】6
【解析】
根據(jù)等腰三角形的性質(zhì)可得AD⊥BC,∠BAD=∠CAD=60°,求出∠DAE=∠EAB=30°,根據(jù)平行線的性質(zhì)求出∠F=∠BAE=30°,從而得到∠DAE=∠F,從而AD=DF,求出∠B=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半解答.
解:∵AB=AC,AD是△ABC的中線,
∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,
∵AE是∠BAD的角平分線,
∴∠DAE=∠EAB=∠BAD=×60°=30°,
∵DF//AB,
∴∠F=∠BAE=30°,
∴∠DAE=∠F=30°,
∴AD=DF,
∵∠B=90°-60°=30°,
∴AD=AB=×12=6,
∴DF=6,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y1=x2﹣4x+4的頂點為A,直線y2=kx﹣2k(k≠0),
(1)試說明直線是否經(jīng)過拋物線頂點A;
(2)若直線y2交拋物線于點B,且△OAB面積為1時,求B點坐標;
(3)過x軸上的一點M(t,0)(0≤t≤2),作x軸的垂線,分別交y1,y2的圖象于點P,Q,判斷下列說法是否正確,并說明理由:
①當k>0時,存在實數(shù)t(0≤t≤2)使得PQ=3.
②當﹣2<k<﹣0.5時,不存在滿足條件的t(0≤t≤2)使得PQ=3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知為等邊三角形,點為直線上一動點(點不與點、點重合).連接,以為邊向逆時針方向作等邊,連接,
(1)如圖1,當點在邊上時:
①求證:;
②判斷之間的數(shù)量關系是 ;
(2)如圖2,當點在邊的延長線上時,其他條件不變,判斷之間存在的數(shù)量關系,并寫出證明過程;
(3)如圖3,當點在邊的反向延長線上時,其他條件不變,請直接寫出之間存在的數(shù)量關系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結(jié)論中:
①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S=ACBD.
正確的是 (填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】銅陵市“雨污分流”工程建設期間,某工程隊承包了一段總長2400米的地下排水管道鋪設任務,按原計劃鋪設800米后,為盡快完成任務,后來每天的工作效率比原計劃提高了25%,結(jié)果共用13天完成任務.
(1)求原計劃平均每天鋪設管道多少米?
(2)若原來每天支付工人工資為2000元,提高工作效率后每天支付給工人的工資增長了30%,則完成整個工程后共支付工人工資多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1有兩條長度相等的相交線段AB、CD,它們相交的銳角中有一個角為60°,為了探究AD、CB與CD(或AB)之間的關系,小亮進行了如下嘗試:
(1)在其他條件不變的情況下使得AD∥BC,如圖2,將線段AB沿AD方向平移AD的長度,得到線段DE,然后聯(lián)結(jié)BE,進而利用所學知識得到AD、CB與CD(或AB)之間的關系: ;(直接寫出結(jié)果)
(2)根據(jù)小亮的經(jīng)驗,請對圖1的情況(AD與CB不平行)進行嘗試,寫出AD、CB與CD(或AB)之間的關系,并進行證明;
(3)綜合(1)、(2)的證明結(jié)果,請寫出完整的結(jié)論: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,于點D,點E是直線AC上一動點,連接DE,過點D作,交直線BC于點F.
探究發(fā)現(xiàn):
如圖1,若,點E在線段AC上,則______;
數(shù)學思考:
如圖2,若點E在線段AC上,則______用含m,n的代數(shù)式表示;
當點E在直線AC上運動時,中的結(jié)論是否任然成立?請僅就圖3的情形給出證明;
拓展應用:若,,,請直接寫出CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC,BD相交于點O,E、F分別是OA,OC的中點.
(1)求證:BE=DF;
(2)在不添加任何輔助線的情況下寫出圖中的所有全等三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com