【題目】如圖,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.
(1)求∠BED的度數;
(2)判斷BE與AC的位置關系,并說明理由.
【答案】(1)25°;(2)BE⊥AC.理由見解析
【解析】試題分析:(1)根據BE平分∠ABC,且∠ABC=50°,可得∠EBC=∠ABC=25.再根據DE∥BC,即可得出∠BED=∠EBC=25°.
(2)根據DE∥BC,且∠C=65°,即可得到∠AED=∠C=65°,再根據∠BED=25°,可得∠AEB=∠AED+∠BED=65°+25°=90°,據此可得BE⊥AC.
試題解析:
(1)∵BE平分∠ABC,且∠ABC=50°,
∴∠EBC=∠ABC=25°.
∵DE∥BC,
∴∠BED=∠EBC=25°.
(2)BE⊥AC,其理由是:
∵DE∥BC,且∠C=65°,
∴∠AED=∠C=65°.
∵∠BED=25°,
∴∠AEB=∠AED+∠BED=65°+25°=90°,
∴BE⊥AC.
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,∠ABC、∠BCD的平分線BE、CF分別與AD相交于點E、F,BE與CF相交于點G.
(1)求證:BE⊥CF;
(2)若AB=3,BC=5,CF=2,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結論__________(填編號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥DE,求證:∠D+∠BCD-∠B=180°.
證明:過點C作CF∥AB.
∵AB∥CF(已知),
∴∠B=________(____________________).
∵AB∥DE,CF∥AB(已知),
∴CF∥DE(__________________________________).
∴∠2+________=180°(________________________).
∵∠2=∠BCD-________(已知),
∴∠D+∠BCD-∠B=180°(等量代換).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在水平桌面上的兩個“E”,當點P1,P2,O在一條直線上時,在點O處用①號“E”測得的視力與用②號“E”測得的視力相同.
(1)圖中b1,b2,l1,l2滿足怎樣的關系式?
(2)若b1=3.2 cm,b2=2 cm,①號“E”的測量距離l1=8 cm,要使測得的視力相同,則②號“E”的測量距離l2應為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并完成填空.
你能比較20152 016和20162 015的大小嗎?
為了解決這個問題,先把問題一般化,比較nn+1和(n+1)n(n≥1,且n為整數)的大。缓髲姆治鰊=1,n=2,n=3…的簡單情形入手,從中發(fā)現規(guī)律,經過歸納、猜想得出結論.
(1)通過計算(可用計算器)比較下列①~⑦組兩數的大。(在橫線上填上“>”“=”或“<”)
①12____21;②23_____32;③34_____43;④45_____54;
⑤56____65;⑥67_____76;⑦78_____87;
(2)歸納第(1)問的結果,可以猜想出nn+1和(n+1)n的大小關系;
(3)根據以上結論,可以得出20162017和20172016的大小關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,陽光通過窗口照到教室內,豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明從二次函數y=ax2+bx+c的圖象(如圖)中觀察
得出了下面五條信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0.
你認為其中正確的信息是_________________.(只填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4,則S1+2S2+2S3+S4=________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com