【題目】如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,試說(shuō)明AD平分∠BAC.完成下面推理過(guò)程:
證明:∵AD⊥BC于D,EG⊥BC于G(已知)
∴∠ADC=∠EGC=90° (
∴AD∥EG (
∴∠1=∠2 (
∠E=∠3 (
又∵∠E=∠1(已知)
∴∠2=∠3 (
∴AD平分∠BAC

【答案】垂直的定義;同位角相等,兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同位角相等;等量代換;角平分線的定義
【解析】證明:∵AD⊥BC于D,EG⊥BC于G(已知), ∴∠ADC=∠EGC=90° (垂直的定義).
∴AD∥EG (同位角相等,兩直線平行),
∴∠1=∠2 (兩直線平行,內(nèi)錯(cuò)角相等),
∠E=∠3 (兩直線平行,同位角相等).
又∵∠E=∠1(已知),
∴∠2=∠3 (等量代換),
∴AD平分∠BAC (角平分線的定義).
所以答案是:垂直的定義|同位角相等,兩直線平行|兩直線平行,內(nèi)錯(cuò)角相等|兩直線平行,同位角相等|等量代| 角平分線的定義
【考點(diǎn)精析】本題主要考查了平行線的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,∠A=105°,∠B∠C15°,求:∠B,∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上到﹣1點(diǎn)的距離等于1個(gè)單位的點(diǎn)所表示的數(shù)是( 。

A. 0 B. ﹣1 C. 1或﹣1 D. 0或﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是(
A.3a+4b=7ab
B.(ab33=ab6
C.x12÷x6=x6
D.(a+2)2=a2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a0)的圖象與x軸交于點(diǎn)(﹣2,0),(x1,0),且1x12,與y軸的正半軸的交點(diǎn)在(0,2)的下方,下列結(jié)論:abc;2a+c0;4a+c0;2a﹣b+10.其中正確結(jié)論的個(gè)數(shù)為(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)把下列各式因式分解:

2m(a-b)-3n(b-a) (2a+b)2 -(a+2b)2

⑵計(jì)算:

( x2y-xy2y3)(-4xy2) (a+2b-3c)(a-2b+3c)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:x2yy_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,因?yàn)锳B∥CD(已知),所以∠BEF=∠CFE(兩直線平行,) 因?yàn)镋G平分∠BEF,F(xiàn)H平分∠CFE(已知),
所以∠2= ∠BEF,∠3=
所以∠2=(等量代換),
所以EG∥ , 兩直線平行).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A(0,2)在( 。

A. 第二象限 B. x軸的正半軸上

C. y軸的正半軸上 D. 第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案