21、如圖,矩形ABCD中,AC與BD交于點O,BE⊥AC,CF⊥BD,垂足分別為E,F(xiàn).
求證:BE=CF.
分析:要證BE=CF,可運用矩形的性質結合已知條件證BE、CF所在的三角形全等.
解答:證明:∵四邊形ABCD為矩形,
∴AC=BD,則BO=CO.(2分)
∵BE⊥AC于E,CF⊥BD于F,
∴∠BEO=∠CFO=90°.
又∵∠BOE=∠COF,
∴△BOE≌△COF.(4分)
∴BE=CF.(5分)
點評:本題主要考查矩形的性質及三角形全等的判定方法.解此題的主要錯誤是思維順勢,想當然,由ABCD是矩形,就直接得出OB=OD,對對應邊上的高的“對應邊”理解不透徹.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案