【題目】如圖,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分線交AB,AC于點(diǎn)D,E.
(1)求證:AE=2CE;
(2)當(dāng)DE=1時(shí),求△ABC的面積.
【答案】(1)見解析;(2)
【解析】
(1)連接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度數(shù),又由AB的垂直平分線交AB于點(diǎn)D,交AC于點(diǎn)E,根據(jù)線段垂直平分線的性質(zhì),可得AE=BE,繼而可求得∠CBE的度數(shù),然后由含30°角的直角三角形的性質(zhì),證得AE=2CE.
(2)連接EB,根據(jù)線段垂直平分線的性質(zhì)得到EA=EB,求出∠EBC=30°,根據(jù)直角三角形的性質(zhì)求出BE,根據(jù)勾股定理求出BC、AC,根據(jù)三角形的面積公式計(jì)算,得到答案.
(1)連接BE.
∵DE是AB的垂直平分線,
∴AE=BE,
∴∠ABE=∠A=30°,
∵∠C=90°,
∴∠ABC=90°-30°=60°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE;
(2)連接BE.
∵∠ACB=90°,∠A=30°,
∴∠ABC=60°,
∵DE是AB邊的垂直平分線,
∴EA=EB,
∴∠EBA=∠A=30°,
∴∠EBC=30°,
∴EB=2ED=2,EC=BE=1,BC==,
∴EA=EB=2,AC=EC+EA=3,
∴△ABC的面積=×BC×AC=××3=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅1、紅2),1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出一個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請用畫樹狀圖或列表法求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進(jìn)甲、乙兩種商品共180件,其進(jìn)價(jià)和售價(jià)如表:(注:獲利=售價(jià)-進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 14 | 35 |
售價(jià)(元/件) | 20 | 43 |
(1)若商店計(jì)劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應(yīng)分別購進(jìn)多少件?
(2)若商店計(jì)劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)當(dāng)x≥30,求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?
(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一張三角形紙片ABC,∠A=80°,點(diǎn)D是AC邊上一點(diǎn),沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩張紙片均為等腰三角形,則∠C的度數(shù)可以是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,點(diǎn)、分別是直線、上的兩點(diǎn).將射線繞點(diǎn)順時(shí)針勻速旋轉(zhuǎn),將射線繞點(diǎn)順時(shí)針勻速旋轉(zhuǎn),旋轉(zhuǎn)后的射線分別記為、,已知射線、射線旋轉(zhuǎn)的速度之和為6度/秒.
(1)射線先轉(zhuǎn)動(dòng)得到射線,然后射線、再同時(shí)旋轉(zhuǎn)10秒,此時(shí)射線與射線第一次出現(xiàn)平行.求射線、的旋轉(zhuǎn)速度;
(2)若射線、分別以(1)中速度同時(shí)轉(zhuǎn)動(dòng)秒,在射線與射線重合之前,設(shè)射線與射線交于點(diǎn),過點(diǎn)作于點(diǎn),設(shè),,如圖2所示.
①當(dāng)時(shí),求、、滿足的數(shù)量關(guān)系;
②當(dāng)時(shí),求和滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一副三角板如圖甲放置,其中∠ACB=DEC=90°,∠A=45°,∠D=30°,AB=6cm,DC=7cm.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D′CE′,如圖乙,這時(shí)AB與CD′相交于點(diǎn)O,D′E′與AB、CB分別相交于點(diǎn)F、G,連接AD′.
(1)求∠OFE′的度數(shù);
(2)求線段AD′的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com