①當(dāng)a=5、b=4時(shí),求代數(shù)式a2-b2和(a+b)(a-b)的值.
②當(dāng)a=-12、b=-13時(shí),求代數(shù)式a2-b2和(a+b)(a-b)的值.
③根據(jù)①②所求的代數(shù)式的值,猜想這兩個(gè)代數(shù)式的值有何關(guān)系?并把你的猜想寫(xiě)出來(lái).
④根據(jù)你的猜想,請(qǐng)用簡(jiǎn)便方法算出當(dāng)a=2013,b=2012時(shí),a2-b2的值.
分析:①將a與b分別代入所求式子中計(jì)算即可得到結(jié)果;
②將a與b分別代入所求式子中計(jì)算即可得到結(jié)果;
③發(fā)現(xiàn)兩代數(shù)式值相等,a2-b2=(a+b)(a-b);
④將所求式子變形后,把a(bǔ)與b的值代入計(jì)算即可求出值.
解答:解:①當(dāng)a=5、b=4時(shí)a2-b2=52-42=9,(a+b)(a-b)=(5+4)×(5-4)=9;
②當(dāng)a=-12、b=-13時(shí)a2-b2=(-12)2-(-13)2=-25,(a+b)(a-b)=(-12-13)×(-12+13)=-25;
③a2-b2=(a+b)(a-b);
④當(dāng)a=2013,b=2012時(shí),a2-b2=(a+b)(a-b)=(2013+2012)×(2013-2012)=4025.
點(diǎn)評(píng):此題考查了代數(shù)式求值,弄清題中的規(guī)律是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小張騎車(chē)從甲地出發(fā)到達(dá)乙地后立即按原路返回甲地,出發(fā)后距甲地精英家教網(wǎng)的路程y(km)與時(shí)間x(h)的函數(shù)圖象如圖所示.
(1)小張?jiān)诼飞贤A?!--BA-->
 
h,他從乙地返回時(shí)騎車(chē)的速度為
 
km/h;
(2)小王在距甲地路程15km的地方與小張同時(shí)出發(fā),按相同路線前往乙地,當(dāng)他到達(dá)乙地停止行動(dòng)時(shí),小張已返回到甲、乙兩地的中點(diǎn)處.已知小王距甲地的路程y(km)與時(shí)間x(h)成一次函數(shù)關(guān)系.
①求y與x的函數(shù)關(guān)系式;
②利用函數(shù)圖象,判斷小王與小張?jiān)谕局泄蚕嘤鰩状危坎⒂?jì)算第一次相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是半圓⊙O的直徑,AC⊥AB,AB=2AC,BF⊥AB,在直徑AB上任取一點(diǎn)P(不與端點(diǎn)A、精英家教網(wǎng)B重合),過(guò)A、P、C三點(diǎn)的圓與⊙O相交于除點(diǎn)A以外的另一點(diǎn)D,連接AD并延長(zhǎng)交射線BF于點(diǎn)E,連接DB、DP、DC.
(1)求證:△ACD∽△BPD;
(2)求證:BE=2BP;
(3)試問(wèn)當(dāng)點(diǎn)P在何位置時(shí),DE=2AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在一個(gè)坡角為30°的斜坡上有一棵樹(shù),高AB,當(dāng)太陽(yáng)光與水平線成60°時(shí),測(cè)得該樹(shù)在斜坡上的樹(shù)影BC的長(zhǎng)為6m,則樹(shù)高AB=
 
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)矩形ABCD的邊長(zhǎng)AB=6,BC=4,點(diǎn)F在DC上,DF=2.動(dòng)點(diǎn)M、N分別從點(diǎn)D、B同時(shí)出發(fā),沿線段DA、線段BA向點(diǎn)A的方向運(yùn)動(dòng),當(dāng)動(dòng)點(diǎn)M運(yùn)動(dòng)到點(diǎn)A時(shí),M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接FM、FN.設(shè)點(diǎn)M、N的運(yùn)動(dòng)速度都是1個(gè)單位/秒,M、N運(yùn)動(dòng)的時(shí)間為x秒,問(wèn):當(dāng)x為多少時(shí),F(xiàn)M⊥FN?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,拋物線y=mx2+8mx+12n與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),在第二象限內(nèi)精英家教網(wǎng)拋物線上的一點(diǎn)C,使△OCA∽△OBC,且AC:BC=
3
:1,若直線AC交y軸于P.
(1)當(dāng)C恰為AP中點(diǎn)時(shí),求拋物線和直線AP的解析式;
(2)若點(diǎn)M在拋物線的對(duì)稱(chēng)軸上,⊙M與直線PA和y軸都相切,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案