【題目】如圖1,拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(-1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=3OA,點(diǎn)P是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,交直線(xiàn)BC于點(diǎn)D,連接PC.

(1)試求拋物線(xiàn)的解析式;
(2)如圖2,當(dāng)動(dòng)點(diǎn)P只在第一象限的拋物線(xiàn)上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,試問(wèn)△PFD的周長(zhǎng)是否有最大值?如果有,請(qǐng)求出最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P在拋物線(xiàn)上運(yùn)動(dòng)時(shí),將△CPD沿直線(xiàn)CP翻折,點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,試問(wèn),四 邊形CDPQ能否成為菱形?如果能,請(qǐng)求此時(shí)點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:由OC=3OA, 有:C(0,3),

將 A(-1,0)、B(4,0),C(0,3)代入y=ax2+bx+c中,

解之得: ,

故y= 即為所求.


(2)

解:設(shè)P(m, ),△PFD的周長(zhǎng)為L(zhǎng),

∵直線(xiàn)BC經(jīng)過(guò)B(4,0),C(0,3),易得直線(xiàn)BC的解析式為:yBC= ,

則D(m, ),PD=

∵PE⊥x軸,PE//OC,

∴∠BDE=∠BCO,

又∠BDE=∠PDF,

∴∠PDF=∠BCO,

而∠PFD=∠BOC=90°,

∴△PFD~△BOC.

,

由(1)知,OC=3,OB=4,則BC=5,

故△BOC的周長(zhǎng)為12,

即:L= (m-2)2+

∴當(dāng)m=2時(shí),L最大= .


(3)

解:存在這樣的Q點(diǎn),使得四邊形CDPQ是菱形.

當(dāng)點(diǎn)Q落在y軸上時(shí),四邊形CDPQ是菱形,

∵由軸對(duì)稱(chēng)的性質(zhì)知,CD=CQ,PQ=PD,∠PCQ=∠PCD,

當(dāng)點(diǎn)Q落在y 軸上時(shí),CQ∥PD,∴∠PCQ=∠CPD,

∴∠PCD=∠CPD,

∴CD=PD,

∴CD=DP=PQ=QC,

∴四邊形CDPQ是菱形,

如圖1,過(guò)點(diǎn)D作DG⊥y軸于點(diǎn)G,

設(shè)P(n, ),則D(n, ),G(0, ),

在Rt△CGD中,CD2=CG2+GD2= =

而PD= ,

∵ PD=CD,

解方程①得:n= 或n=0(不符合題意,舍去),

解方程②得:n= 或n=0(不符合題意,舍去).

當(dāng)n= 時(shí),P( , ),

當(dāng)n= 時(shí),P( ).

綜上所述,存在這樣的P點(diǎn),使得四邊形CDPQ為菱形,此時(shí)點(diǎn)P的坐標(biāo)為P( )或( , ).


【解析】(1)由OC=3OA,求出點(diǎn)C坐標(biāo),再運(yùn)用待定系數(shù)法求;(2)易證得△PFD~△BOC,由相似三角形的周長(zhǎng)比等于相似比,求出△PFD的周長(zhǎng)與點(diǎn)P橫坐標(biāo)的關(guān)系,再求最值;(3)由PD//y軸,且CP為四邊形CDPQ的對(duì)角線(xiàn),則Q在y軸上時(shí),四邊形CDPQ為菱形,根據(jù)PD=CD,列方程解出答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn)),還要掌握二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減小;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義符號(hào)min{a,b}的含義為:當(dāng)a≥b時(shí)min{a,b}=b;當(dāng)a<b時(shí)min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.則min{﹣x2+1,﹣x}的最大值是(
A.
B.
C.1
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:任意一個(gè)有理數(shù)與無(wú)理數(shù)的和為無(wú)理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無(wú)理數(shù)的積為無(wú)理數(shù),而零與無(wú)理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無(wú)理數(shù),那么a=0且b=0.

運(yùn)用上述知識(shí),解決下列問(wèn)題:

(1)如果a-2+b+3=0,其中a、b為有理數(shù),那么a= ,b= ;

(2)如果2+a-1-b=5,其中a、b為有理數(shù),求a+2b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC中,ABC的外角∠ABD的平分線(xiàn)與∠ACB的平分線(xiàn)交于點(diǎn)O,MN過(guò)點(diǎn)O,且MNBC,分別交AB、AC于點(diǎn)MN

求證:(1)MO=MB;(2)MN=CNBM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為降低空氣污染,啟東飛鶴公交公司決定全部更換節(jié)能環(huán)保的燃?xì)夤卉?chē).計(jì)劃購(gòu)買(mǎi)A型和B型兩種公交車(chē)共10輛,其中每臺(tái)的價(jià)格,年載客量如表:

A

B

價(jià)格(萬(wàn)元/臺(tái))

a

b

年載客量(萬(wàn)人/年)

60

100

若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)1輛,共需350萬(wàn)元.

(1)求ab的值;

(2)如果該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車(chē)在該線(xiàn)路的年均載客總和不少于680萬(wàn)人次.請(qǐng)你設(shè)計(jì)一個(gè)方案,使得購(gòu)車(chē)總費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國(guó)際上,法國(guó)教育部宣布從 2018 9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開(kāi)展了手機(jī)伴我健康行主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行使用手機(jī)目的每周使用手機(jī)的時(shí)間的問(wèn)卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知查資料的人數(shù)是 40人.請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:

(1)在扇形統(tǒng)計(jì)圖中,玩游戲對(duì)應(yīng)的百分比為______,圓心角度數(shù)是______度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2 小時(shí)以上(不含2小時(shí))的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC為等邊三角形,點(diǎn)D由點(diǎn)C出發(fā),在BC的延長(zhǎng)線(xiàn)上運(yùn)動(dòng),連結(jié)AD,以AD為邊作等邊三角形ADE,連結(jié)CE

(1)請(qǐng)寫(xiě)出AC、CD、CE之間的數(shù)量關(guān)系,并證明;

(2)若AB=6cm,點(diǎn)D的運(yùn)動(dòng)速度為每秒2cm,運(yùn)動(dòng)時(shí)間為t秒,則t為何值時(shí),CEAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi).如表所 示是該市居民一戶(hù)一表生活用水及提示計(jì)費(fèi)價(jià)格表的部分信息:

自來(lái)水銷(xiāo)售價(jià)格

污水處理價(jià)格

每戶(hù)每月用水量

單價(jià):元/

單價(jià):元/

17 噸以下

a

0.80

超過(guò) 17 噸但不超過(guò) 30

噸的部分

b

0.80

超過(guò) 30 噸的部分

6.00

0.80

(說(shuō)明:每戶(hù)產(chǎn)生的污水量等于該戶(hù)自來(lái)水用水量;水費(fèi)自來(lái)水費(fèi)用 污水處理費(fèi)用)

已知小明家 2017 5 月份用水 20 噸,交水費(fèi) 66 元;6 月份用水 25 噸交水費(fèi)91

(1)a 、b 的值;

(2)為了節(jié)約開(kāi)支,小明家計(jì)劃把 7 月份的水費(fèi)控制在不超過(guò)家庭月收入的2% .若小明家的月收入為 9200 元,則小明家 7 月份最多能用水多少?lài)崳?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等邊OAB的頂點(diǎn)Ax軸的負(fù)半軸上,點(diǎn)B(a,b)在第二象限內(nèi),且a,b滿(mǎn)足.點(diǎn)Py軸上的一個(gè)動(dòng)點(diǎn),以PA為邊作等邊PAC,直線(xiàn)BCx軸于點(diǎn)M,交y軸于點(diǎn)D.

(1)求點(diǎn)A的坐標(biāo);

(2)如圖2,當(dāng)點(diǎn)Py軸正半軸上時(shí),求點(diǎn)M的坐標(biāo);

(3)如圖3,當(dāng)點(diǎn)Py軸負(fù)半軸上時(shí),求出OP,CD,AD滿(mǎn)足的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案