【題目】如果∠α和∠β互補,且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).正確的有( )
A.4個
B.3個
C.2個
D.1個

【答案】B
【解析】解:∵∠α和∠β互補,

∴∠α+∠β=180°.因為90°﹣∠β+∠β=90°,所以①正確;

又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正確;

(∠α+∠β)+∠β= ×180°+∠β=90°+∠β≠90°,所以③錯誤;

(∠α﹣∠β)+∠β= (∠α+∠β)= ×180°=90°,所以④正確.

綜上可知,①②④均正確.

所以答案是:B.

【考點精析】本題主要考查了余角和補角的特征的相關知識點,需要掌握互余、互補是指兩個角的數(shù)量關系,與兩個角的位置無關才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

我們把滿足某種條件的所有點所組成的圖形,叫做符合這個條件的點的軌跡.

例如:角的平分線是到角的兩邊距離相等的點的軌跡.

問題:如圖1,已知EF為ABC的中位線,M是邊BC上一動點,連接AM交EF于點P,那么動點P為線段AM中點.

理由:線段EF為ABC的中位線,EFBC,由平行線分線段成比例得:動點P為線段AM中點.

由此你得到動點P的運動軌跡是:

知識應用:

如圖2,已知EF為等邊ABC邊AB、AC上的動點,連結EF;若AF=BE,且等邊ABC的邊長為8,求線段EF中點Q的運動軌跡的長.

拓展提高:

如圖3,P為線段AB上一動點(點P不與點A、B重合),在線段AB的同側分別作等邊APC和等邊PBD,連結AD、BC,交點為Q.

(1)求AQB的度數(shù);

(2)若AB=6,求動點Q運動軌跡的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”

(1)概念理解:

請你根據上述定義舉一個等鄰角四邊形的例子;

(2)問題探究;

如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點P,連結AC,BD,試探究AC與BD的數(shù)量關系,并說明理由;

(3)應用拓展;

如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點A順時針旋轉角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當凸四邊形AD′BC為等鄰角四邊形時,求出它的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,錯誤的是( )

A.兩條對角線互相垂直的平行四邊形是菱形

B.兩條對角線相等的平行四邊形是菱形

C.一組鄰邊相等的平行四邊形是菱形

D.四邊形相等的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點O是直線AB上一點,∠COD是直角,OE平分∠BOC.

(1)①、如圖1,若∠AOC=50°,求∠DOE的度數(shù);
②、如圖1,若∠AOC=α,直接寫出∠DOE的度數(shù)(用含α的代數(shù)式表示);
(2)將圖1中的∠COD按順時針方向旋轉至圖2所示的位置.
探究∠AOC與∠DOE的度數(shù)之間的關系,寫出你的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分線,垂足為D,交AC于E.
(1)若∠ABE=40°,求∠EBC的度數(shù);
(2)若△ABC的周長為41cm,一邊長為15cm,求△BCE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的半徑為5cm,點O到直線MN的距離為4cm,則⊙O與直線MN的位置關系為________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知甲、乙兩組數(shù)據的平均數(shù)都是15,甲組數(shù)據的方差s2=1,乙組數(shù)據的方差s2=8,下列結論中正確的是(  )

A. 甲組數(shù)據比乙組數(shù)據的波動大 B. 乙組數(shù)據比甲組數(shù)據的波動大

C. 甲組數(shù)據與乙組數(shù)據的波動一樣大 D. 甲組數(shù)據與乙組數(shù)據的波動不能比較

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.

查看答案和解析>>

同步練習冊答案