【題目】如圖,在中,邊的垂直平分線交的平分線于點(diǎn),連接,,過點(diǎn)于點(diǎn).

1)若,求的度數(shù);

2)若,則_______;(直接寫出結(jié)果)

【答案】(1);(2)

【解析】

1)首先過點(diǎn)DDEOBE,DFOCF,易證得△DEB≌△DFCHL),即可得∠BDC=∠EDF,又由∠EOF+∠EDF180°,即可求得答案;

2)由(1),可求得∠BDC的度數(shù).

1)過點(diǎn)DDEOB,交OB延長線于點(diǎn)E

OD是∠BOC的平分線,

DEDF,

DPBC的垂直平分線,

BDCD,

RtDEBRtDFC中,

,

∴△DEB≌△DFCHL).

∴∠BDE=∠CDF,

∴∠BDC=∠EDF

∵∠EOF+∠EDF180°,

∵∠BOC60°,

∴∠BDC=∠EDF120°.

2)∵∠EOF+∠EDF180°,

∵∠BOC=α,

∴∠BDC=∠EDF180°α.

故答案為:180°α.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價(jià)x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線相交于、兩點(diǎn),過點(diǎn)軸于點(diǎn),連接,則的面積為(

A. 3 B. 1.5 C. 4.5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC90°E為邊BC上的點(diǎn),且ABAE,D為線段BE的中點(diǎn),過點(diǎn)EEFAE,過點(diǎn)AAFBC,且AF、EF相交于點(diǎn)F

1)求證:∠C=∠BAD

2)求證:ACEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB30°M,N分別是OAOB上的定點(diǎn),PQ分別是邊OB,OA上的動點(diǎn),如果記AMP,ONQ,當(dāng)MPPQQN最小時,則的數(shù)量關(guān)系是_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的直徑,點(diǎn)延長線上一點(diǎn),,的弦,

(1)求證:直線的切線;

(2)若,垂足為,的半徑為,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課間,小明拿著老師的等腰直角三角尺玩,不小心掉到兩堆磚塊之間,如圖所示.

1)求證:ADC≌△CEB

2)已知DE35cm,請你幫小明求出磚塊的厚度a的大小(每塊磚的厚度相同).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PT是⊙O的切線,T為切點(diǎn),PA是割線,交⊙OA、B兩點(diǎn),與直徑CT交于點(diǎn)D.已知CD2AD3,BD4,那PB___________

查看答案和解析>>

同步練習(xí)冊答案