如圖,A,B,C,D,E,F(xiàn),M,N是某公園里的8個獨立的景點,D,E,B三個景點之間的距離相等;A,B,C三個景點距離相等.其中D,B,C在一條直線上,E,F(xiàn),N,C在同一直線上,D,M,F(xiàn),A也在同一條直線上.游客甲從E點出發(fā),沿E→F→N→C→A→B→M游覽,同時,游客乙從D點出發(fā),沿D→M→F→A→C→B→N游覽.若兩人的速度相同且在各景點游覽的時間相同,甲、乙兩人誰最先游覽完?請說明理由.
沿E→F→N→C→A→B→M,D→M→F→A→C→B→N的距離相等,
所以甲、乙兩人同時瀏覽完.
解析試題分析:答:甲、乙兩人同時瀏覽完.
理由如下:
∵D,E,B三個景點之間距離相等,
∴BD=BE=DE.
∴△BDE是等邊三角形.
∴∠DBE=60°.
同理,△ABC也是等邊三角形,∠ABC=60°.
∴∠ABE=180°-∠DBE-∠ABC=60°.
∴∠DBE=∠ABC=∠ABE.
∴∠ABD=∠ABE+∠DBE,∠CBE=∠ABE+∠ABC.
∴∠ABD=∠CBE.
∴△ABD≌△CBE(SAS).
∴CE=AD,∠BDA=∠BEC.
∵BD=BE,∠BDA=∠BEC,∠DBE=∠ABE,
∴△MBD≌△NBE(ASA).
∴BM=BN.
∴EC+AC+AB+BM=AD+AC+BC+BN.
∴沿E→F→N→C→A→B→M,D→M→F→A→C→B→N的距離相等,
所以甲、乙兩人同時瀏覽完.
考點:全等三角形判定與性質
點評:本題難度中等,主要考查學生等邊三角形及全等三角形判定與性質知識點的掌握與解決實際問題的綜合運用能力,為中考?碱}型,要求學生注意培養(yǎng)數(shù)形結合思想,運用到考試中去。
科目:初中數(shù)學 來源: 題型:
4 | x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com