【題目】某校在基地參加社會實踐話動中,帶隊老師考問學生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留一個寬為3米的出入口,如圖所示,如何設計才能使園地的面積最大?下面是兩位學生爭議的情境:

請根據(jù)上面的信息,解決問題:
(1)設AB=x米(x>0),試用含x的代數(shù)式表示BC的長;
(2)請你判斷誰的說法正確,為什么?

【答案】
(1)解:設AB=x米,可得BC=69+3﹣2x=72﹣2x
(2)解:小英說法正確;

矩形面積S=x(72﹣2x)=﹣2(x﹣18)2+648,

∵72﹣2x>0,

∴x<36,

∴0<x<36,

∴當x=18時,S取最大值,

此時x≠72﹣2x,

∴面積最大的不是正方形


【解析】(1)設AB=x米,根據(jù)等式x+x+BC=69+3,可以求出BC的表達式;(2)得出面積關(guān)系式,根據(jù)所求關(guān)系式進行判斷即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.
(1)求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”或“列表”等方式給出分析過程)
(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4)

(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1 , 直接寫出點A1的坐標;
(2)請畫出△ABC繞原點O順時針旋轉(zhuǎn)90°的圖形△A2B2C2 , 直接寫出點A2的坐標;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).

(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且SAOP=4SBOC , 求點P的坐標;
(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈,銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500.
(1)設李明每月獲得利潤為w(元),求出w與x的函數(shù)關(guān)系式.
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)當銷售單價定為多少元時,每月可獲得最大利潤?得最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過點A(-1,-2).則當x>1時,函數(shù)值y的取值范圍是( )

A.y>1
B.0<y<1
C.y>2
D.0< y<2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算: +(1﹣ 0﹣4cos45°.
(2)解方程組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2= 的圖象交與A(1,M),B(n,﹣1)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D,連接AO,BO.得出以下結(jié)論:
①點A和點B關(guān)于直線y=﹣x對稱;
②當x<1時,y2>y1;
③SAOC=SBOD;
④當x>0時,y1 , y2都隨x的增大而增大.
其中正確的是( )

A.①②③
B.②③
C.①③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P在等邊△ABC的內(nèi)部,且PC=6,PA=8,PB=10,將線段PC繞點C順時針旋轉(zhuǎn)60°得到P'C,連接AP',則sin∠PAP'的值為

查看答案和解析>>

同步練習冊答案