【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都為1,每個小正方形的頂點叫格點.請完成如圖所示的畫圖,要求:①僅用無刻度的直尺,②不寫畫法,保留必要的畫圖痕跡.

1)在圖1中畫出一條長為的線段MNMN分別為格點)

2)在圖2中畫出一個以格點為頂點,以AB為一邊的正方形ABCD;

3)在圖3中,E,F分別為格點,畫出線段EF的垂直平分線l

【答案】1)作圖見解析;(2)作圖見解析;(3)作圖見解析

【解析】

(1)因為正方形網(wǎng)格中的每個正方形邊長都是1,根據(jù)勾股定理可得,直角邊長為23的直角三角形的斜邊長是;;

2)根據(jù)正方形的定義來畫圖即可;

3)用圓規(guī)分別取長度長于線段一半小于全長分別在線段兩端畫圓,將兩圓交點一連即為垂直平分線;

解:(1)線段MN如圖所示;

2)正方形ABCD如圖所示;

3)線段EF的垂直平分線l如圖所示;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線yax26ax+6a≠0)與x軸交于點A80),與y軸交于點B,在x軸上有一動點Em,0)(0m8),過點Ex軸的垂線交直線AB于點N,交拋物線于點P,過點PPMAB于點M

1)求出拋物線的函數(shù)表達式;

2)設PMN的面積為S1,AEN的面積為S2,若S1S23625,求m的值;

3)如圖2,在(2)條件下,將線段OE繞點O逆時針旋轉得到OE,旋轉角為30°,連接E'AE'B,在坐標平面內(nèi)找一點Q,使AOEBOQ,并求出Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(-3,﹣2)兩點.

(1)求m的值;

(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點, 且y1>y2,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形A0B0C0A1的邊長為1,正方形A1B1C1A2的邊長為2,正方形A2B2C2A3的邊長為4,正方形A3B3C3A4的邊長為8……依此規(guī)律繼續(xù)作正方形AnBnnAn+1,且點A0,A1A2,A3,An+1在同一條直線上,連接A0C1A1B1于點D1,連接A1C2A2B2于點D2,連接A2C3A3B3于點D3……記四邊形A0B0C0D1的面積為S1,四邊形A1B1C1D2的面積為S2,四邊形A2B2C2D3的面積為S3……四邊形An1Bn1Cn1Dn的面積為Sn,則S2019_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮分別從甲地和乙地同時出發(fā),沿同一條路相向而行,小明開始跑步,中途改為步行,到達乙地恰好用小亮騎自行車以的速度直接到甲地,兩人離甲地的路程與各自離開出發(fā)地的時間之間的函數(shù)圖象如圖所示,

甲、乙兩地之間的路程為______m,小明步行的速度為______

求小亮離甲地的路程y關于x的函數(shù)表達式,并寫出自變量x的取值范圍;

求兩人相遇的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】開口向下的拋物線yax+1)(x4)與x軸的交點為A、BAB的左邊),與y軸交于點C.連接AC、BC

1)若△ABC是直角三角形(圖1),求二次函數(shù)的解析式;

2)在(1)的條件下,將拋物線沿y軸的負半軸向下平移kk0)個單位,使平移后的拋物線與坐標軸只有兩個交點,求k的值;

3)當點C坐標為(0,4)時(圖2),PQ兩點同時從C點出發(fā),點P沿折線COB運動到點B,點Q沿拋物線(在第一象限的部分)運動到點B,若PQ兩點的運動速度相同,請問誰先到達點B?請說明理由.(參考數(shù)據(jù):.6,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在梯形ABCD中,ADBC,ACBC10,cosACB,點E在對角線AC上(不與點A、C重合),∠EDC=∠ACB,DE的延長線與射線CB交于點F,設AD的長為x

1)如圖1,當DFBC時,求AD的長;

2)設ECy,求y關于x的函數(shù)解析式,并直接寫出定義域;

3)當△DFC是等腰三角形時,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2ax﹣3a(a<0)與x軸相交于A,B兩點,與y軸相交于點C,頂點為D,直線DC與x軸相交于點E.

(1)當a=﹣1時,求拋物線頂點D的坐標,OE等于多少;

(2)OE的長是否與a值有關,說明你的理由;

(3)設∠DEO=β,45°≤β≤60°,求a的取值范圍;

(4)以DE為斜邊,在直線DE的左下方作等腰直角三角形PDE.設P(m,n),直接寫出n關于m的函數(shù)解析式及自變量m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿AB與地面仍保持垂直的關系,而折斷部分AC與未折斷樹桿AB形成53°的夾角.樹桿AB旁有一座與地面垂直的鐵塔DE,測得BE=6米,塔高DE=9米.在某一時刻的太陽照射下,未折斷樹桿AB落在地面的影子FB長為4米,且點F、B、C、E在同一條直線上,點F、A、D也在同一條直線上.求這棵大樹沒有折斷前的高度.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

同步練習冊答案