【題目】已知,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且AB=4,頂點(diǎn)P(3,-4).
(1)求拋物線的解析式;
(2)若點(diǎn)M在拋物線上,且△MAB的面積為24,求M點(diǎn)的坐標(biāo).
【答案】(1)y=x2-6x+5;(2)M1(-1,12),M2(7,12)
【解析】
(1)先求出拋物線的對稱軸,從而求出點(diǎn)A和點(diǎn)B的坐標(biāo),設(shè)拋物線的解析式為:y=a(x-3)2-4,將點(diǎn)B的坐標(biāo)代入即可求出結(jié)論;
(2)設(shè)點(diǎn)M(m,m2-6m+5),根據(jù)三角形的面積公式可得AB|m2-6m+5|=24,解一元二次方程即可求出結(jié)論.
解:(1)∵拋物線的頂點(diǎn)P(3,-4),
∴拋物線的對稱軸為直線x=3.
又在x軸上所截得的線段AB的長為4,
∴點(diǎn)A、B到對稱軸的距離為2.
∴點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(5,0).
設(shè)拋物線的解析式為:y=a(x-3)2-4.
將點(diǎn)B(5,0)代入可得:0=a(5-3)2-4.
解得a=1.
故拋物線的解析式為:y=(x-3)2-4,即y=x2-6x+5.
(2)設(shè)點(diǎn)M(m,m2-6m+5),
∵S△MAB=24,
∴AB|m2-6m+5|=24,即m2-6m+5=±12.
∴m2-6m+5=12或m2-6m+5=-12.
由m2-6m+5=12得m2-6m-7=0.
解得:x1=-1,x2=7,
∴M1(-1,12),M2(7,12);
由m2-6m+5=-12得m2-6m+17=0.
=(-6)2-4×17=-32<0.
∴方程無解,舍去.
綜上:M1(-1,12),M2(7,12).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上、斜邊長分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點(diǎn)坐標(biāo)分別為A1(2,0),A2(1,﹣1),A3(0,0),則依圖中所示規(guī)律,A2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是ABC的外接圓,AB為直徑,∠BAC的平分線交于點(diǎn)D,過點(diǎn)D作DEAC分別交AC、AB的延長線于點(diǎn)E、F.
(1)求證:EF是的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過,,與y軸交于點(diǎn)C,點(diǎn)P是拋物線上BC上方的一個(gè)動點(diǎn).
(1)求這條拋物線對應(yīng)的函數(shù)表達(dá)式:
(2)當(dāng)PAC的面積時(shí),求點(diǎn)P的坐標(biāo);
(3)若拋物線上有另一動點(diǎn)Q,滿足BC平分,過點(diǎn)O作PQ的平行線交拋物線于點(diǎn)D,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2,一個(gè)銳角等于60°的菱形紙片,小芳同學(xué)將一個(gè)三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時(shí)針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點(diǎn)E、F,∠EDF=60°,當(dāng)CE=AF時(shí),如圖1小芳同學(xué)得出的結(jié)論是DE=DF.
(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時(shí),如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由;
(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長線上時(shí),如圖3請直接寫出DE與DF的數(shù)量關(guān)系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時(shí),y有最小值,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=,將△ACB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△AC′B′,則CB′的長為( 。
A. +B. 1+C. 3D. +
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線的頂點(diǎn)為,經(jīng)過拋物線上的兩點(diǎn)和的直線交拋物線的對稱軸于點(diǎn).
(1)求拋物線的解析式和直線的解析式.
(2)在拋物線上兩點(diǎn)之間的部分(不包含兩點(diǎn)),是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)若點(diǎn)在拋物線上,點(diǎn)在軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,正方形ABCD的邊長為4,取AB邊上的中點(diǎn)E,連接CE,過點(diǎn)B作BF⊥CE于點(diǎn)F,連接DF.過點(diǎn)A作AH⊥DF于點(diǎn)H,交CE于點(diǎn)M,交BC于點(diǎn)N,則MN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級(8)班的5名同學(xué)聯(lián)合設(shè)計(jì)了一份調(diào)查問卷,對該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設(shè)置選項(xiàng),要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2,根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的總?cè)藬?shù)是 人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,“步行”的人數(shù)所占的百分比是 ,“其他方式”所在扇形的圓心角度數(shù)是 ;
(3)已知這5名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報(bào)調(diào)查結(jié)果.請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com