【題目】如圖,過正方形ABCD頂點B,C的⊙O與AD相切于點P,與AB,CD分別相交于點E,F(xiàn),連接EF.
(1)求證:PF平分∠BFD;
(2)若tan∠FBC= ,DF= ,求EF的長.

【答案】
(1)證明:連接OP、BF、PF.

∵⊙O與AD相切于點P,

∴PO⊥AD,

∵四邊形ABCD是正方形,

∴CD⊥AD,

∴OP∥CD,

∴∠PFD=∠OPF,

∵OP=OF,

∴∠OPF=∠OFP,

∴∠OFP=∠PFD,

∴PF平分∠BFD


(2)解:∵∠C=90°,

∴BF是⊙O的直徑,

∴∠BEF=90°,

∴四邊形BCFE是矩形,

∴EF=BC,

∵tan∠FBC= ,設(shè)FC=3x,則BC=4x,

∵BC=DC,

∴4x=3x+

∴x= ,

∴EF=BC=4


【解析】(1)連接OP、BF、PF.由OP∥CD,推出∠PFD=∠OPF,由OP=OF,推出∠OPF=∠OFP,即可推出∠OFP=∠PFD.(2)首先證明四邊形BCFE是矩形,推出EF=BC,由tan∠FBC= ,設(shè)FC=3x,則BC=4x,由BC=DC,可得方程4x=3x+ ,解方程即可解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進一批L型服裝(數(shù)量足夠多),進價為40元/件,以60元/件銷售,每天銷售20件,根據(jù)市場調(diào)研,若每件降價1元,則每天銷售數(shù)量比原來多3件.現(xiàn)商場決定對L型服裝開展降價促銷活動,每件降價x元(x為正整數(shù)).在促銷期間,商場要想每天獲得最大銷售毛利潤,每件應(yīng)降價多少元?每天最大銷售毛利潤為多少?(注:每件服裝銷售毛利潤是指每件服裝的銷售價與進貨價的差)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩名同學(xué)中選拔一人參加“中華好詩詞”大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下: 甲:79,86,82,85,83
乙:88,79,90,81,72.
回答下列問題:
(1)甲成績的平均數(shù)是 , 乙成績的平均數(shù)是;
(2)經(jīng)計算知S2=6,S2=42.你認為選拔誰參加比賽更合適,說明理由;
(3)如果從甲、乙兩人5次的成績中各隨機抽取一次成績進行分析,求抽到的兩個人的成績都大于80分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了進一步改進本校七年級數(shù)學(xué)教學(xué),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,校教務(wù)處在七年級所有班級中,每班隨機抽取了6名學(xué)生,并對他們的數(shù)學(xué)學(xué)習(xí)情況進行了問卷調(diào)查.我們從所調(diào)查的題目中,特別把學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調(diào)查的學(xué)生必須從中選一項且只能選一項)結(jié)果進行了統(tǒng)計,現(xiàn)將統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是;
(3)若該校七年級共有960名學(xué)生,請你估算該年級學(xué)生中對數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y= x刻畫.

(1)請用配方法求二次函數(shù)圖象的最高點P的坐標;
(2)小球的落點是A,求點A的坐標;
(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為5的⊙P與y軸交于點M(0,﹣4),N(0,﹣10),點P的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形OCPD的頂點O為原點,它的兩條邊所在的直線分別為x軸和y軸建立直角坐標系.以點P為圓心,PC為半徑的⊙P與x軸的正半軸交于A、B兩點.若拋物線y=ax2+bx+4經(jīng)過A,B,C三點,且AB=6.

(1)求⊙P的半徑R的長;
(2)求該拋物線的解析式;
(3)求出該拋物線與⊙P的第四個交點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(x>y),下列四個說法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中說法正確的是(

A.①②
B.①②③
C.①②④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,可以看作是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案