【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
【答案】(1)答案見(jiàn)解析;(2)答案見(jiàn)解析.
【解析】
試題分析:(1)由SAS證明△ABD≌△ACE,得出對(duì)應(yīng)邊相等即可
(2)證出∠BAN=∠CAM,由全等三角形的性質(zhì)得出∠B=∠C,由AAS證明△ACM≌△ABN,得出對(duì)應(yīng)角相等即可.
試題解析:(1)在△ABD和△ACE中,∵AB=AC,∠1=∠2,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE;
(2)∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,∵∠C=∠BA,AC=AB,∠CAM=∠CAN,∴△ACM≌△ABN(ASA),∴∠M=∠N.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)平面內(nèi)一點(diǎn)到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對(duì)于一個(gè)點(diǎn)與等邊三角形,給出如下定義:滿(mǎn)足r≤d≤R的點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,等邊△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,2),B(﹣,﹣1),C(,﹣1).
(1)已知點(diǎn)D(2,2),E(,1),F(,﹣1).在D,E,F中,是等邊△ABC的中心關(guān)聯(lián)點(diǎn)的是 ;
(2)如圖1,過(guò)點(diǎn)A作直線(xiàn)交x軸正半軸于M,使∠AMO=30°.
①若線(xiàn)段AM上存在等邊△ABC的中心關(guān)聯(lián)點(diǎn)P(m,n),求m的取值范圍;
②將直線(xiàn)AM向下平移得到直線(xiàn)y=kx+b,當(dāng)b滿(mǎn)足什么條件時(shí),直線(xiàn)y=kx+b上總存在等邊△ABC的中心關(guān)聯(lián)點(diǎn);(直接寫(xiě)出答案,不需過(guò)程)
(3)如圖2,點(diǎn)Q為直線(xiàn)y=﹣1上一動(dòng)點(diǎn),⊙Q的半徑為.當(dāng)Q從點(diǎn)(﹣4,﹣1)出發(fā),以每秒1個(gè)單位的速度向右移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.是否存在某一時(shí)刻t,使得⊙Q上所有點(diǎn)都是等邊△ABC的中心關(guān)聯(lián)點(diǎn)?如果存在,請(qǐng)直接寫(xiě)出所有符合題意的t的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別延長(zhǎng)ABCD的邊CD,AB到E,F,使DE=BF,連接EF,分別交AD,BC于G,H,連結(jié)CG,AH.
求證:CG∥AH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店需要購(gòu)進(jìn)甲、乙兩種商品共180件,其進(jìn)價(jià)和售價(jià)如表:(注:獲利=售價(jià)﹣進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 14 | 35 |
售價(jià)(元/件) | 20 | 43 |
(1)若商店計(jì)劃銷(xiāo)售完這批商品后能獲利1240元,問(wèn)甲、乙兩種商品應(yīng)分別購(gòu)進(jìn)多少件?
(2)若商店計(jì)劃投入資金少于5040元,且銷(xiāo)售完這批商品后獲利多于1312元,請(qǐng)問(wèn)有哪幾種購(gòu)貨方案?并直接寫(xiě)出其中獲利最大的購(gòu)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面內(nèi)的三條直線(xiàn)有哪幾種位置關(guān)系?請(qǐng)畫(huà)圖說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明. 已知:如圖,BE∥CD,∠A=∠1,
求證:∠C=∠E.
證明:∵BE∥CD (已知 )
∴∠2=∠C ()
又∵∠A=∠1 (已知 )
∴AC∥DE ()
∴∠2=∠E ()
∴∠C=∠E (等量代換 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是正方體的展開(kāi)圖,則原正方體相對(duì)兩個(gè)面上的數(shù)字之和的最小值是( )
A.3
B.6
C.7
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若點(diǎn)P(a,b)在函數(shù)y=的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱(chēng)為函數(shù)y=的一個(gè)“派生函數(shù)”.例如:點(diǎn)(2, )在函數(shù)y=的圖象上,則函數(shù)y=2x2+ 稱(chēng)為函數(shù)y=的一個(gè)“派生函數(shù)”.現(xiàn)給出以下兩個(gè)命題:
(1)存在函數(shù)y=的一個(gè)“派生函數(shù)”,其圖象的對(duì)稱(chēng)軸在y軸的右側(cè)
(2)函數(shù)y=的所有“派生函數(shù)”的圖象都經(jīng)過(guò)同一點(diǎn),下列判斷正確的是( 。
A. 命題(1)與命題(2)都是真命題
B. 命題(1)與命題(2)都是假命題
C. 命題(1)是假命題,命題(2)是真命題
D. 命題(1)是真命題,命題(2)是假命題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com