【題目】如圖,在 中, ,以 的中點 為圓心分別與 , 相切于 , 兩點,則 的長為( )
A.
B.
C.
D.

【答案】B
【解析】連接OE,OD,OA,∵以 B C 的中點 O 為圓心分別與 A B , A C 相切于 D , E 兩點,
∴OD⊥AB,OE⊥AC;又∵ ∠ A = 90 °
∴四邊形ADOE為矩形,又∵OE=OD
∴矩形ADOE為正方形;∠OAD=45°,OD⊥AB
∵OA=BC=OB=
∴∠AOB=90° AB==2
∴OD=AB=1
弧E D 的長為=

由兩條切線以及∠A=90°易得四邊形ADOE為矩形∠OAD=45°,再由直角三角形斜邊上的中線等于斜邊的一半易得OA=BC=OB=再由勾股定理,求得AB的長,從而得到OD=AB=1再利用弧長公式可得結果。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在△ ABC中,AD,AE分別是 ABC的高和角平分線,若∠B=30°,∠C=50°.

(1)求∠DAE的度數(shù).

(2)試寫出 DAE與∠C-B有何關系?(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,0為原點,A(4,0),E(0,3),四邊形OABC,四邊形OCDE都為平行四邊形,OC=5,函數(shù)y= (x>0)的圖象經(jīng)過AB的中點F和DE的中點G,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實效,抽樣調查了部分居民小區(qū)一段時間內生活垃圾的分類情況,其相關信息如圖:

(注:A為可回收物,B為廚余垃圾,C為有害垃圾,D為其他垃圾)
根據(jù)圖表解答下列問題:
(1)在抽樣數(shù)據(jù)中,產(chǎn)生的有害垃圾共多少噸?
(2)請將條形統(tǒng)計圖補充完整;
(3)調查發(fā)現(xiàn),在可回收物中塑料類垃圾占 ,每回收1噸塑料類垃圾可獲得0.7噸二級原料.假設該城市每月產(chǎn)生的生活垃圾為5000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級原料?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人.

1)求第一輪后患病的人數(shù);(用含x的代數(shù)式表示)

2)在進入第二輪傳染之前,有兩位患者被及時隔離并治愈,問第二輪傳染后總共是否會有21人患病的情況發(fā)生,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù) 的圖象如圖,給出下列四個結論:① ;② ;③ ;④ ,其中正確結論的個數(shù)是( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtAOBRtCOD中,∠AOB=∠COD90°,∠B40°,∠C60°,點D在邊OA上,將圖中的△COD繞點O按每秒10°的速度沿順時針方向旋轉一周,在旋轉的過程中,在第________秒時,邊CD恰好與邊AB平行.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠為了選擇1名車工參加加工直徑為10 mm的精密零件的技術比賽,隨機抽取甲、乙兩名車工加工的5個零件,現(xiàn)測得的結果如下表,請你比較、的大小(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是□ABCD的對角線,點E、F在BD上,要使四邊形AECF是平行四邊形,還需增加的一個條件是____________

查看答案和解析>>

同步練習冊答案