【題目】如圖,在等邊三角形ABC中,D為AC的中點,,則和△AED(不包含△AED)相似的三角形有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】
由于△ABC是等邊三角形,那么可知其三邊相等,三個內角相等,再根據D是AC中點,以及AEEB=13,易得AE:AD=1:2=AD:AB,而∠A=∠A,可證△AED∽△ADB,同理可證△AED∽△CDB.
∵△ABC是等邊三角形,
∴AB=AC=BC,
又∵D是AC中點,
∴BD⊥AC,∠ABD=30°,AD:AC=1:2,
∵,
∴AE:AB=1:4,
∴AE:AD=1:2=AD:AB,
又∵∠A=∠A,
∴△AED∽△ADB,
∴∠AED=∠ADB=90°.
∵∠A=∠C=60°,CD:BC=AE:AD=1:2,
∴△AED∽△CDB.
∵∠AED=∠DEB=90°,∠ADE=∠DBE=30°,
∴△AED∽DEB.
故選C.
科目:初中數學 來源: 題型:
【題目】超市購買大件物品都有送貨上門服務,那么羅平沃爾瑪超市一輛貨車從超市出發(fā),向東走了,到達小明家,繼續(xù)向東走了到達小紅家,又向西走了到達小英家,最后回到超市.
(1)請以超市為原點,以向東為正方向,用1個單位長度表示,畫出數軸.并在數軸上表示出小明家、小紅家、小英家的位置;
(2)小英家距小明家有多遠?
(3)貨車一共行駛了多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,作AB邊的垂直平分線交直線BC于M,交AB于點N.
(1)如圖,若,則=_________度;
(2)如圖,若,則=_________度;
(3)如圖,若,則=________度;
(4)由問,你能發(fā)現與∠A有什么關系?寫出猜想,并證明。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC,P為斜邊BC上一點(PB<CP),分別過點B,C作BE⊥AP于點E,CD⊥AP于點D.
(1)求證:AD=BE;
(2)若AE=2DE=2,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角形ABC的三邊長分別為6 cm、7.5 cm、9 cm,三角形DEF的一邊長為4 cm.當三角形DEF的另兩邊長是下列哪一組時,這兩個三角形相似( )
A. 2 cm、3 cm B. 4 cm、5 cm C. 5 cm、6 cm D. 6 cm、7 cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CD、BE為高,AN為角平分線,OM平分∠BOC交BC于M.
(1) 若∠BAC=,求∠BOM;
(2) 求證: OM∥AN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,馬戲團讓獅子和公雞表演蹺蹺板節(jié)目.蹺蹺板支柱 AB的高度為1.2米.
(1)若吊環(huán)高度為2米,支點 A為蹺蹺板 PQ的中點,獅子能否將公雞送到吊環(huán)上?為什么?
(2)若吊環(huán)高度為3.6米,在不改變其他條件的前提下移動支柱,當支點 A移到蹺蹺板 PQ的什么位置時,獅子剛好能將公雞送到吊環(huán)上?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正比例函數的圖象與反比例函數的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點D,使△ABD為直角三角形?若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為實現營養(yǎng)套餐的合理搭配,某電商推出兩款適合不同人群的甲、乙兩種袋裝的混合粗糧.甲種袋裝粗糧每袋含有3千克A粗糧,1千克B粗糧,1千克C粗糧;乙種袋裝粗糧每袋含有1千克A粗糧,2千克B粗糧,2千克C粗糧.甲、乙兩種袋裝粗糧每袋成本分別等于袋中的A、B、C三種粗糧成本之和.已知每袋甲種粗糧的成本是每千克A種粗糧成本的7.5倍,每袋乙種粗糧售價比每袋甲種粗糧售價高20%,乙種袋裝粗糧的銷售利潤率是20%.當銷售這兩款袋裝粗糧的銷售利潤率為24%時,該電商銷售甲、乙兩種袋裝粗糧的袋數之比是_____(商品的銷售利潤率=×100%)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com