如圖,在Rt△ABC中,已知∠ABC=90°,以AB為直徑作⊙O交AC于D,E為BC的中點(diǎn),連接DE,求證:DE為⊙O的切線.
證明:連接DO,DB,
∴OD=OB
∴∠ODB=∠OBD.
∵AB是直徑,
∴∠ADB=90°,
∴∠CDB=90°.
∵E為BC的中點(diǎn),
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵∠ABC=90°,
∴∠EDO=90°.
∴DE為⊙O的切線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是( 。
A.OCAEB.EC=BCC.∠DAE=∠ABED.AC⊥OE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:直線DE與⊙O相切;
(2)當(dāng)AB=9,BC=6時(shí),求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△AOB中,OA=OB=10,∠AOB=120°,以O(shè)為圓心,5為半徑的⊙O與OA、OB相交.
求證:AB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在⊙O中,弦CD垂直直徑AB,垂足為M,AB=4,CD=2
3
,點(diǎn)E在AB的延長(zhǎng)線上,且tanE=
3
3
.求證:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,A為⊙O的弦EF上的一點(diǎn),OB是和這條弦垂直的半徑,垂足為H,BA的延長(zhǎng)線交⊙O于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線與EF的延長(zhǎng)線相交于點(diǎn)D.
(1)求證:DA=DC;
(2)當(dāng)DF:EF=1:8,且DF=
2
時(shí),求AB•AC的值;
(3)將圖1中的EF所在直線往上平行移動(dòng)到⊙O外,如圖2的位置,使EF與OB,延長(zhǎng)線垂直,垂足為H,A為EF上異于H的一點(diǎn),且AH小于⊙O的半徑,AB的延長(zhǎng)線交⊙O于C,過(guò)C作⊙O的切線交EF于D.試猜想DA=DC是否仍然成立?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,BC=5,AC=12,若以C為圓心,R為半徑作的圓與斜邊AB沒有公共點(diǎn),則R的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E,要使DE是⊙O的切線,還需補(bǔ)充一個(gè)條件,則補(bǔ)充的條件不正確的是( 。
A.DE=DOB.AB=ACC.CD=DBD.ACOD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、BC上的點(diǎn).經(jīng)過(guò)A、D兩點(diǎn)的⊙O分別交AB、AC于點(diǎn)E、F,且D為
EF
的中點(diǎn).
(1)求證:BC與⊙O相切;
(2)當(dāng)AD=2
3
,∠CAD=30°時(shí).求
AD
的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案