【題目】邊長(zhǎng)為a,b的矩形發(fā)生形變后成為邊長(zhǎng)為a,b的平行四邊形,如圖1,ABCD中,,AB邊上的高為h,我們把ha的比值叫做這個(gè)平行四邊形的形變比”.

畫出圖2中菱形ABCD形變前的圖形.

若圖2中菱形ABCD形變比,求菱形ABCD形變前后的面積之比.

當(dāng)邊長(zhǎng)為3,4的矩形形變后成為一個(gè)內(nèi)角是的平行四邊形時(shí),求這個(gè)平行四邊形的形變比”.

【答案】(1)見解析;(2)2:;(3)

【解析】

(1)作出邊長(zhǎng)等于菱形ABCD的棱長(zhǎng)的正方形即可求解;

(2)由形變比得到=,再根據(jù)底相同的菱形與正方形面積的比為高之比即可求解;

(3)分a=3,a=4兩種情況討論可求這個(gè)平行四邊形的“形變比”.

解:如圖所示:

如圖1,過點(diǎn)D于點(diǎn)E,

,

由于菱形ABCD形變前為正方形,且形變前后兩圖形底相同,所以形變前后面積的比為高之比,

,

菱形ABCD形變前后的面積之比為2:

如圖2,

當(dāng)時(shí),

,

,

形變比

當(dāng)時(shí),

,

,

形變比

綜上,當(dāng)邊長(zhǎng)為3,4的矩形形變后成為一個(gè)內(nèi)角是的平行四邊形時(shí),這個(gè)平行四邊形的形變比

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由甲、乙兩個(gè)工程隊(duì)承包某校校園的綠化工程,甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程所需的時(shí)間比是53,兩隊(duì)共同施工15天可以完成.

1)求兩隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?

2)此項(xiàng)工程由甲、乙兩隊(duì)共同施工15天完成任務(wù)后,學(xué)校付給他們20000元報(bào)酬,若按各自完成的工程量分配這筆錢,問甲、乙兩隊(duì)各應(yīng)得到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy直線與函數(shù)的圖象的兩個(gè)交點(diǎn)分別為Aa,1)、B.

(1)求,a的值及點(diǎn)B的坐標(biāo);

(2)過點(diǎn)Pn,0)作x軸的垂線,與直線和函數(shù)的圖象分別交于點(diǎn)MN,當(dāng)點(diǎn)M在點(diǎn)N上方時(shí),寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),已知點(diǎn)的坐標(biāo)(-1,4),點(diǎn)的位置如圖所示

1)寫出圖中點(diǎn)的坐標(biāo): ________;

2)求的面積;

3)畫出關(guān)于軸的對(duì)稱圖形,點(diǎn)的對(duì)稱點(diǎn)分別為,寫出的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校允許學(xué)生在同個(gè)系列的校服里選擇不同款式,新生入學(xué)后,學(xué)校就新生對(duì)校服款式選擇情況作了抽樣調(diào)查,調(diào)查分為款式AB、CD四種,每位新生只能選擇一種款式,現(xiàn)將調(diào)查統(tǒng)計(jì)結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合這兩幅統(tǒng)計(jì)圖,回答下列問題:

1)在本次調(diào)查中,一共抽取了多少名新生,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該校有847名新生,服裝廠已生產(chǎn)了270B款式的校服,請(qǐng)你按相關(guān)統(tǒng)計(jì)知識(shí)判斷是否還要繼續(xù)生產(chǎn)B款式的校服?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長(zhǎng)方形紙片ABCD沿EF折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上.

∠1=50°,求∠2、∠3的度數(shù);

AB=7,DE=8,求CF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人同時(shí)同地沿同一路線開始攀登一座600米高的山,甲的攀登速度是乙的1.2倍,他比乙早20分鐘到達(dá)頂峰.甲乙兩人的攀登速度各是多少?如果山高為米,甲的攀登速度是乙的倍,并比乙早分鐘到達(dá)頂峰,則兩人的攀登速度各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABP是兩個(gè)全等的等邊三角形,且,有下列四個(gè)結(jié)論:①,,④四邊形ABCD是軸對(duì)稱圖形,其中正確的有

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案