【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),ABCD的頂點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)D的坐標(biāo)為(0,2),點(diǎn)B在x軸的正半軸上,點(diǎn)E為線(xiàn)段AD的中點(diǎn).
(Ⅰ)如圖1,求∠DAO的大小及線(xiàn)段DE的長(zhǎng);
(Ⅱ)過(guò)點(diǎn)E的直線(xiàn)l與x軸交于點(diǎn)F,與射線(xiàn)DC交于點(diǎn)G.連接OE,△OEF′是△OEF關(guān)于直線(xiàn)OE對(duì)稱(chēng)的圖形,記直線(xiàn)EF′與射線(xiàn)DC的交點(diǎn)為H,△EHC的面積為3 .
①如圖2,當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求GH,DG的長(zhǎng);
②當(dāng)點(diǎn)G在點(diǎn)H的右側(cè)時(shí),求點(diǎn)F的坐標(biāo)(直接寫(xiě)出結(jié)果即可).
【答案】(Ⅰ)∠DAO=60°,DE=2; (Ⅱ)①GH=6,DG=﹣3+;②F(﹣5﹣,0).
【解析】解:(Ⅰ)∵A(﹣2,0),D(0,2)∴AO=2,DO=2,∴tan∠DAO==,
∴∠DAO=60°,∴∠ADO=30°,∴AD=2AO=4,∵點(diǎn)E為線(xiàn)段AD中點(diǎn),∴DE=2;
(Ⅱ)①如圖2,
過(guò)點(diǎn)E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,
∵CD∥AB,∴∠DGE=∠OFE,
∵△OEF′是△OEF關(guān)于直線(xiàn)OE的對(duì)稱(chēng)圖形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,
∵點(diǎn)E是AD的中點(diǎn),∴OE=AD=AE,
∵∠EAO=60°,∴△EAO是等邊三角形,∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,
∴∠EOF′=∠AEO,∴AD∥OF′,∴∠OF′E=∠DEH,∴∠DEH=∠DGE,
∵∠DEH=∠EDG,∴△DHE∽△DEG,∴,∴DE2=DG×DH,
設(shè)DG=x,則DH=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣,∴DG=﹣3+.
②如圖3,
過(guò)點(diǎn)E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,
∵CD∥AB,∴∠DHE=∠OFE,
∵△OEF′是△OEF關(guān)于直線(xiàn)OE的對(duì)稱(chēng)圖形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,
∵點(diǎn)E是AD的中點(diǎn),∴OE=AD=AE,
∵∠EAO=60°,∴△EAO是等邊三角形,∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,∴∠EOF′=∠AEO,∴AD∥OF′,
∴∠OF′E=∠DEH,∴∠DEG=∠DHE,
∵∠DEG=∠EDH,∴△DGE∽△DEH,∴,∴DE2=DG×DH,
設(shè)DH=x,則DG=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣,
∴DH=﹣3+.∴DG=3+∴DG=AF=3+,∴OF=5+,∴F(﹣5﹣,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分) 求一個(gè)正數(shù)的算術(shù)平方根,有些數(shù)可以直接求得,如,有些數(shù)則不能直接求得,如,但可以通過(guò)計(jì)算器求. 還有一種方法可以通過(guò)一組數(shù)的內(nèi)在聯(lián)系,運(yùn)用規(guī)律求得,請(qǐng)同學(xué)們觀察下表:
n | 16 | 0.16 | 0.0016 | 1600 | 160000 | … |
4 | 0.4 | 0.04 | 40 | 400 | … |
(1)表中所給的信息中,你能發(fā)現(xiàn)什么規(guī)律?(請(qǐng)將規(guī)律用文字表達(dá)出來(lái))
(2)運(yùn)用你發(fā)現(xiàn)的規(guī)律,探究下列問(wèn)題:已知1.435,求下列各數(shù)的算術(shù)平方根:
①0.0206 ; ②20600 ;
(3)根據(jù)上述探究過(guò)程類(lèi)比研究一個(gè)數(shù)的立方根已知1.260,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)a =-2時(shí),代數(shù)式4a2-3a-1的值是( )
A.-11B.-23C.9D.21
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)計(jì)劃在2020年左右發(fā)射火星探測(cè)衛(wèi)星,據(jù)科學(xué)研究,火星距離地球的最近距離約為55000000千米.用科學(xué)記數(shù)法表示數(shù)據(jù)55000000為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中假命題是( )
A.正六邊形的外角和等于360°
B.位似圖形必定相似
C.樣本方差越大,數(shù)據(jù)波動(dòng)越小
D.方程x2+x+1=0無(wú)實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)x=1,y=-6時(shí),求下列代數(shù)式的值:
(1)x2+y2;
(2)(x+y)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,求作,使,根據(jù)下圖填空:
作法:()作射線(xiàn)__________;
()以點(diǎn)____為圓心,以任意長(zhǎng)為半徑畫(huà)弧,交于點(diǎn)_____,交______于點(diǎn)_____;
()以點(diǎn)_____為圓心,以______長(zhǎng)為半徑畫(huà)弧,交于點(diǎn)_______;
()以點(diǎn)______為圓心,以______長(zhǎng)為半徑畫(huà)弧,交前面的弧于點(diǎn);
()過(guò)點(diǎn)_______作射線(xiàn)_______,則________就是所求作的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具廠生產(chǎn)一種玩具,本著控制固定成本,降價(jià)促銷(xiāo)的原則,使生產(chǎn)的玩具能夠全部售出.據(jù)市場(chǎng)調(diào)查,若按每個(gè)玩具280元銷(xiāo)售時(shí),每月可銷(xiāo)售300個(gè).若銷(xiāo)售單價(jià)每降低1元,每月可多售出2個(gè).據(jù)統(tǒng)計(jì),每個(gè)玩具的固定成本Q(元)與月產(chǎn)銷(xiāo)量y(個(gè))滿(mǎn)足如下關(guān)系:
月產(chǎn)銷(xiāo)量y(個(gè)) | … | 160 | 200 | 240 | 300 | … |
每個(gè)玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)寫(xiě)出月產(chǎn)銷(xiāo)量y(個(gè))與銷(xiāo)售單價(jià)x (元)之間的函數(shù)關(guān)系式;
(2)求每個(gè)玩具的固定成本Q(元)與月產(chǎn)銷(xiāo)量y(個(gè))之間的函數(shù)關(guān)系式;
(3)若每個(gè)玩具的固定成本為30元,則它占銷(xiāo)售單價(jià)的幾分之幾?
(4)若該廠這種玩具的月產(chǎn)銷(xiāo)量不超過(guò)400個(gè),則每個(gè)玩具的固定成本至少為多少元?銷(xiāo)售單價(jià)最低為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)值0.0000105用科學(xué)記數(shù)法表示為( )
A.1.05×104
B.0.105×10﹣4
C.1.05×10﹣5
D.1.05×10﹣7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com