【題目】(10分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.
(1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).
(2)為了提前完成生產(chǎn)任務,工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務,求原計劃安排的工人人數(shù).
【答案】(1)原計劃每天生產(chǎn)零件2400個,規(guī)定的天數(shù)是10天;(2)原計劃安排的工人人數(shù)為480人.
【解析】試題分析:(1)設原計劃每天生產(chǎn)零件x個,根據(jù)相等關系“原計劃生產(chǎn)24000個零件所用時間=實際生產(chǎn)(24000+300)個零件所用的時間”可列方程,解出x即為原計劃每天生產(chǎn)的零件個數(shù),再代入即可求得規(guī)定天數(shù);(2)設原計劃安排的工人人數(shù)為y人,根據(jù)“(5組機器人生產(chǎn)流水線每天生產(chǎn)的零件個數(shù)+原計劃每天生產(chǎn)的零件個數(shù))×(規(guī)定天數(shù)-2)=零件總數(shù)24000個”可列方程[5×20×(1+20%)×+2400] ×(10-2)=24000,解得y的值即為原計劃安排的工人人數(shù).
試題解析:(1)解:設原計劃每天生產(chǎn)零件x個,由題意得,
,
解得x=2400,
經(jīng)檢驗,x=2400是原方程的根,且符合題意.
∴規(guī)定的天數(shù)為24000÷2400=10(天).
答:原計劃每天生產(chǎn)零件2400個,規(guī)定的天數(shù)是10天.
(2)設原計劃安排的工人人數(shù)為y人,由題意得,
[5×20×(1+20%)×+2400] ×(10-2)=24000,
解得,y=480.
經(jīng)檢驗,y=480是原方程的根,且符合題意.
答:原計劃安排的工人人數(shù)為480人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣8與x軸交于兩點A,B,與y軸交于點C,直線l經(jīng)過坐標原點O,與拋物線的一個交點為點D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標分別為(﹣2,0),(6,﹣8).
(1)求拋物線的函數(shù)表達式;
(2)求點E的坐標;
(3)試探究在x軸下方的拋物線上是否存在點F,使得△FOB和△EOB的面積相等,若存在,請求出點F的坐標,若不存在,請說明理由;
(4)若點P是y軸負半軸上的一個動點,設其坐標為(0,m),直線PB與直線l交于點Q,請直接寫出:當m為何值時,△OPQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級(1)班部分學生接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動,收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了如圖①②兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題.
(1)九年級(1)班接受調(diào)查的學生共有多少名?
(2)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中的“體育活動C”所對應的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國有五座名山,但在洪雅人的心目中,我國有六座名山,這六座名山的海拔分別為:
山名 | 泰山 | 華山 | 黃山 | 廬山 | 峨嵋山 | 瓦屋山 |
海拔(米) | 1152 | 1997 | 1873 | 1500 | 1309 | 2830 |
(1)海拔最高的山是多少,最高的山與最低的山的海拔相差多少米;
(2)海拔不低于1500米的山的頻數(shù)是多少;頻率是多少;
(3)根據(jù)數(shù)據(jù)制作條形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)所示,在A,B兩地間有一車站C,一輛汽車從A地出發(fā)經(jīng)C站勻速駛往B地.如圖(2)是汽車行駛時離C站的路程y(千米)與行駛時間x(小時)之間的函數(shù)關系的圖象.
(1)a等于多少km,AB兩地的距離為多少km;
(2)求線段PM、MN所表示的y與x之間的函數(shù)表達式;
(3)求行駛時間x在什么范圍時,小汽車離車站C的路程不超過60千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)場學習:
在一次數(shù)學興趣小組活動中,老師和幾個同學一起探討:在an=b中,a,b,n三者關系.
同學甲:已知a,n,可以求b,是我們學過的乘方運算,其中b叫做a的n次方.如:(﹣2)3=﹣8,其中﹣8是﹣2的3次方.
同學乙:已知b,n,可以求a,是我們學過的開方運算,其中a叫做b的n次方根.如:(±2)2=4,其中±2 是4的二次方根(或平方根);(﹣3)3=﹣27,其中﹣3是﹣27的三次方根(或立方根).
老師:兩位同學說的很好,那么請大家計算:
(1)81的四次方根等于 ;﹣32的五次方根等于 .
同學丙:老師,如果已知a和b,那么如何求n呢?又是一種什么運算呢?
老師:這個問題問的好,已知a,b,可以求n,它是一種新的運算,稱為對數(shù)運算.
這種運算的定義是:若an=b(a>0,a≠1),n叫做以a為底b的對數(shù),記作:n=logab.例如:23=8,3叫做 以2為底8的對數(shù),記作3=log28.根據(jù)題意,請大家計算:
(2)log327= ; ()﹣2+﹣log4= .
隨后,老師和同學們又一起探究出對數(shù)運算的一條性質(zhì):如果a>0,a≠1,M>0,N>0,那么logaMN=logaM+logaN.
(3)請你利用上述性質(zhì)計算:log53+log5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O分別切△ABC的三條邊AB、BC、CA于點D、E、F, , C△ABC=10cm且∠C=60°.求:
(1)⊙O的半徑r;
(2)扇形OEF的面積(結(jié)果保留π);
(3)扇形OEF的周長(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:⊙O的直徑AB=12,AM和BN是它的兩條切線,DE切⊙O于E,交AM于D,交BN于C,設AD=X,BC=Y,求Y與X的函數(shù)關系式,并畫出它的大致圖象.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com