【題目】為判斷命題有三條邊相等且一組對(duì)角相等的四邊形是菱形的真假,數(shù)學(xué)課上,老師給出菱形ABCD如圖1,并作出了一個(gè)四邊形ABCD.具體作圖過(guò)程如下:

如圖2,在菱形ABCD中,

①連接BD,以點(diǎn)B為圓心,以BD的長(zhǎng)為半徑作圓弧,交CD于點(diǎn)P;

②分別以BD為圓心,以BC、PC的長(zhǎng)為半徑作圓弧,兩弧交于點(diǎn)C

③連接BC、DC,得四邊形ABCD

依據(jù)上述作圖過(guò)程,解決以下問(wèn)題:

1)求證:∠A=∠C;ADBC

2)根據(jù)作圖過(guò)程和(1)中的結(jié)論,說(shuō)明命題有三條邊相等且有一組對(duì)頂角相等的四邊形是菱形   命題.(填寫(xiě)

【答案】(1)見(jiàn)解析;(2)真

【解析】

1)連接BP,由菱形的性質(zhì)得出AD=BC,∠A=BCD,根據(jù)題意得出BC=BCBD=BP,DC=PC,得出AD=BC′,由SSS證明△BPC≌△BDC′,得出對(duì)應(yīng)角相等∠BCD=C′,即可得出∠A=C′;
2)由(1)可知命題“有三條邊相等且有一組對(duì)頂角相等的四邊形是菱形”是真命題.

證明:連接BP,如圖所示:


∵四邊形ABCD是菱形,
AD=BC,∠A=BCD,
根據(jù)題意得:BC=BC,BD=BP,DC=PC,
AD=BC′,
在△BPC和△BDC′中,

∴△BPC≌△BDC′(SSS),
∴∠BCD=C′,
∴∠A=C′;
2)由(1)可知四邊形ABCD中,AB=AD=BC′,∠A=C,但四邊形ABCD不存在,易證A、D、C′共線,
所以有三條邊相等且有一組對(duì)頂角相等的四邊形是菱形”是真命題.
故答案為:真.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過(guò)的時(shí)間t(單位:s)之間的關(guān)系如下表:

t

0

1

2

3

4

5

6

7

h

0

8

14

18

20

20

18

14

下列結(jié)論:①足球距離地面的最大高度為20m;②足球飛行路線的對(duì)稱(chēng)軸是直線t=;③足球被踢出9s時(shí)落地;④足球被踢出1.5s時(shí),距離地面的高度是11m,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】美麗的甬江宛如一條玉帶穿城而過(guò),數(shù)學(xué)課外實(shí)踐活動(dòng)中,小林在甬江岸邊的A, B兩點(diǎn)處,利用測(cè)角儀分別對(duì)西岸的一觀景亭D進(jìn)行測(cè)量.如圖,測(cè)得∠DAC=45°,DBC=65°,若AB=114米,求觀景亭D到甬江岸邊AC的距離約為多少米?

(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知是等腰直角三角形,,點(diǎn)DBC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DGDE上,連接AE,BG

試猜想線段BGAE的數(shù)量關(guān)系是______

將正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn),

判斷中的結(jié)論是否仍然成立?請(qǐng)利用圖2證明你的結(jié)論;

,當(dāng)AE取最大值時(shí),求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD平分∠BAC,AB=AC,連接BC,交AD于點(diǎn)E,下列說(shuō)法正確的有( 。

①∠BAC=∠ACB;②S四邊形ABDC=ADCE;③AB2+CD2=AC2+BD2;④AB﹣BD=AC﹣CD.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從DC兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).

1)如圖1,當(dāng)點(diǎn)E在邊DC上自DC移動(dòng),同時(shí)點(diǎn)F在邊CB上自CB移動(dòng)時(shí),連接AEDF交于點(diǎn)P,請(qǐng)你寫(xiě)出AEDF的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理;

2)如圖2,當(dāng)E,F分別在邊CDBC的延長(zhǎng)線上移動(dòng)時(shí),連接AEDF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答,不需證明);連接AC,求ACE為等腰三角形時(shí)CECD的值;

3)如圖3,當(dāng)EF分別在直線DC,CB上移動(dòng)時(shí),連接AEDF交于點(diǎn)P,由于點(diǎn)EF的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫(huà)出點(diǎn)P運(yùn)動(dòng)路徑的草圖.AD=2,試求出線段CP的最大值.

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅行社推出一條成本價(jià)為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報(bào)價(jià)(元/人)之間的關(guān)系為,已知:旅游主管部門(mén)規(guī)定該旅游線路報(bào)價(jià)在800元/人~1200元/人之間.

(1)要將該旅游線路每月游客人數(shù)控制在200人以?xún)?nèi),求該旅游線路報(bào)價(jià)的取值范圍;

(2)求經(jīng)營(yíng)這條旅游線路每月所需要的最低成本;

(3)當(dāng)這條旅游線路的旅游報(bào)價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在足夠大的空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長(zhǎng);

(2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】陽(yáng)光市場(chǎng)某個(gè)體商戶(hù)購(gòu)進(jìn)某種電子產(chǎn)品,每個(gè)進(jìn)價(jià)是50.調(diào)查發(fā)現(xiàn),當(dāng)售價(jià)是80元時(shí),平均一周可賣(mài)出160個(gè),而當(dāng)售價(jià)每降低2元時(shí),平均一周可多賣(mài)出20個(gè).若設(shè)每個(gè)電子產(chǎn)品降價(jià)x元,

(1)根據(jù)題意,填表:

進(jìn)價(jià)(元)

售價(jià)(元)

每件利潤(rùn)(元)

銷(xiāo)量(個(gè))

一周總利潤(rùn)(元)

降價(jià)前

50

80

30

160

降價(jià)后

50

(2)若商戶(hù)計(jì)劃每周盈利5200元,且盡量減少庫(kù)存,則應(yīng)降價(jià)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案