【題目】如圖,ABC是邊長(zhǎng)為3 cm的等邊三角形,動(dòng)點(diǎn)P,Q同時(shí)從A,B兩點(diǎn)出發(fā),分別沿ABBC方向勻速移動(dòng),它們的速度都是1 cm/s,當(dāng)點(diǎn)P運(yùn)動(dòng)到B時(shí),PQ兩點(diǎn)停止運(yùn)動(dòng),設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t(s)

(1)當(dāng)t為何值時(shí),PBQ是直角三角形?

(2)設(shè)四邊形APQC的面積為y(cm2),求y關(guān)于t的函數(shù)表達(dá)式,當(dāng)t取何值時(shí),四邊形APQC的面積最?并求出最小面積.

【答案】1)當(dāng)t為1或2時(shí),△PBQ是直角三角形;(2)當(dāng)t為時(shí),四邊形APQC的面積最小,最小面積為cm2.

【解析】

1)分情況進(jìn)行討論:①∠BPQ=90°;②∠BQP=90°;在直角三角形中利用30°角所對(duì)直角邊等于斜邊一半求解即可;

2)用ABC的面積-PBQ的面積表示出四邊形APQC的面積,即可得出y,t的函數(shù)關(guān)系式,再將函數(shù)關(guān)系式轉(zhuǎn)化為頂點(diǎn)式,即可求出最小值.

(1)由題意可知,∠B60°,BP(3t)cm,BQtcm.PBQ是直角三角形,則∠BPQ30°或∠BQP30°,于是BQBPBPBQ,即t (3t)3tt.解得t1t2,即當(dāng)t12時(shí),PBQ是直角三角形.

(2)如圖,過(guò)點(diǎn)PPMBC于點(diǎn)M,

則易知BMBP (3t)cm.

PM (3t)cm.

S四邊形APQCSABCSPBQ×3× (3t)t2t,即yt2t,易知0<t<3.

于是y=t-2+

∴當(dāng)t時(shí),y取得最小值,為

即當(dāng)t時(shí),四邊形APQC的面積最小,最小面積為cm2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校開(kāi)展以素質(zhì)提升為主題的研學(xué)活動(dòng),推出了以下四個(gè)項(xiàng)目供學(xué)生選擇:A.模擬駕駛;B.軍事競(jìng)技;C.家鄉(xiāng)導(dǎo)游;D.植物識(shí)別.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中一個(gè)項(xiàng)目.八年級(jí)(3)班班主任寧老師對(duì)全

班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問(wèn)題:

(1)八年級(jí)(3)班學(xué)生總?cè)藬?shù)是多少,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)寧老師發(fā)現(xiàn)報(bào)名參加“植物識(shí)別”的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這組學(xué)生中任意挑選兩名擔(dān)任活動(dòng)記錄員,那么恰好選1名男生和1名女生擔(dān)任活動(dòng)記錄員的概率;

(3)若學(xué)校學(xué)生總?cè)藬?shù)為2000人,根據(jù)八年級(jí)(3)班的情況,估計(jì)全校報(bào)名軍事競(jìng)技的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)yx0)的圖象相交于點(diǎn)A、點(diǎn)B,與X軸交于點(diǎn)C,其中點(diǎn)A(﹣1,3)和點(diǎn)B(﹣3,n).

1)填空:m   n   

2)求一次函數(shù)的解析式和AOB的面積.

3)根據(jù)圖象回答:當(dāng)x為何值時(shí),kx+b≥(請(qǐng)直接寫出答案)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù) y=﹣x+4 的圖象與反比例 y=k 為常數(shù), k≠0)的圖象交于 A(1,a)、Bb,1)兩點(diǎn).

(1)求點(diǎn) A、B 的坐標(biāo)及反比例函數(shù)的表達(dá)式;

(2) x 軸上找一點(diǎn),使 PA+PB 的值最小求滿足條件的點(diǎn) P 的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形ABCD的邊長(zhǎng)為3a,兩動(dòng)點(diǎn)E,F分別從頂點(diǎn)B,C同時(shí)開(kāi)始以相同速度沿邊BC,CD運(yùn)動(dòng),與BCF相應(yīng)的EGH在運(yùn)動(dòng)過(guò)程中始終保持EGH≌△BCF,BE,C,G在一條直線上.

(1)BEa,求DH的長(zhǎng).

(2)當(dāng)E點(diǎn)在BC邊上的什么位置時(shí),DHE的面積取得最小值?并求該三角形面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的是二次函數(shù)為常數(shù),且)的圖象,其對(duì)稱軸為直線,且經(jīng)過(guò)點(diǎn)(0,1),則下列結(jié)論錯(cuò)誤的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC上一動(dòng)點(diǎn)(不與A、C兩點(diǎn)重合),連接BP,過(guò)點(diǎn)P作PE⊥PB交直線CD于點(diǎn)E,連接BE,MN//BC分別交AB、DC于點(diǎn)M、N.設(shè).

(1)當(dāng)點(diǎn)E在CD邊上時(shí),線段PE于線段PB有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論.

(2)設(shè)以點(diǎn)B,C,P,E為頂點(diǎn)的四邊形的面積為y,試確定y與x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=k1x+bk1≠0)與雙曲線k2≠0)相交于A12)、Bm﹣1)兩點(diǎn).

1)求直線和雙曲線的解析式;

2)若A1x1,y1),A2x2,y2),A3x3y3)為雙曲線上的三點(diǎn),且x10x2x3,請(qǐng)直接寫出y1y2,y3的大小關(guān)系式;

3)觀察圖象,請(qǐng)直接寫出不等式k1x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)務(wù)院辦公廳在2015316日發(fā)布了《中國(guó)足球發(fā)展改革總體方案》,這是中國(guó)足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了足球在身邊知識(shí)競(jìng)賽,各類獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問(wèn)題:

1)獲得一等獎(jiǎng)的學(xué)生人數(shù);

2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,CD四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫樹(shù)狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案