【題目】如圖,D是△ABC外接圓上的點,且B,D位于AC的兩側(cè),DE⊥AB,垂足為E,DE的延長線交此圓于點F.BG⊥AD,垂足為G,BG交DE于點H,DC,FB的延長線交于點P,且PC=PB.
(1)求證:∠BAD=∠PCB;
(2)求證:BG∥CD;
(3)設(shè)△ABC外接圓的圓心為O,若AB=DH,∠COD=23°,求∠P的度數(shù).
【答案】(1)證明見解析;(2)證明見解析;(3)97°
【解析】
(1)根據(jù)鄰補角定義和圓內(nèi)接四邊形對角互補、等邊對等角即可證出結(jié)論.
(2)根據(jù)等邊對等角得:∠PCB=∠PBC,由圓內(nèi)接四邊形的性質(zhì)得:∠BAD+∠BCD=180°,從而得:∠BFD=∠PCB=∠PBC,根據(jù)平行線的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直徑,從而得:∠ADC=∠AGB=90°,根據(jù)同位角相等可得結(jié)論;
(3)先證明四邊形BCDH是平行四邊形,得BC=DH,根據(jù)特殊的三角函數(shù)值得:∠ACB=60°,最后由PC=PB,得出∠P=180°﹣2×()°=97°.
(1)證明:如圖1,
∵PC=PB,
∴∠PCB=∠PBC,
∵四邊形ABCD內(nèi)接于圓,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB;
(2)證明:由(1)得∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直徑,
∵∠ABC=90°,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(3)解:由(1)得:BC∥DF,BG∥CD,
∴四邊形BCDH是平行四邊形,
∴BC=DH,
在Rt△ABC中,
∵AB= DH,
∴tan∠ACB==,
∴∠ACB=60°,
連接OD,
∵∠COD=23°,OD=OC,
∴∠OCD=(180°﹣23°)=()°,
∴∠PCB=180°﹣∠ACB﹣∠OCD=()°,
∵PC=PB,
∴∠P=180°﹣2×()°=97°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點是邊上一點,聯(lián)結(jié),過點作,交于點,將沿直線翻折,點落在點,若為等腰三角形,則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC,BD交于點E,∠BAC=90°,∠CED=45°,BE=2DE=2,CD=.
(1)求AB的長;
(2)求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CF⊥AB于點E,CF=4,過點C作⊙O的切線交AB的延長線于點D,∠D=30°,則OA的長為( 。
A. 2 B. 4 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,經(jīng)過點C的⊙O與斜邊AB相切于點P,AC=8,BC=6.
(1)當(dāng)點O在AC上時,求證:2∠ACP=∠B;
(2)在(1)的條件下,求⊙O的半徑.
(3)若圓心O在△ABC之外,則CP的變化范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個體小服裝店主準(zhǔn)備在夏季來臨前,購進(jìn)甲、乙兩種T恤.兩種T恤的相關(guān)信息如表:
品牌 | 甲 | 乙 |
進(jìn)價(元/件) | 45 | 80 |
售價(元/件) | 75 | 120 |
根據(jù)上述信息,該店決定用不少于6198元,但不超過6296元的資金購進(jìn)這兩種T恤共100件請解答下列問題:
(1)該店有哪幾種進(jìn)貨方案?
(2)該店按哪種方案進(jìn)貨所獲利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=4cm,點F是弦BC的中點,∠ABC=60°,若動點E以2cm/s的速度在線段AB上由A向B運動,連接EF,設(shè)運動時間為t(s),當(dāng)△BEF是直角三角形時,t的值等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動:購買原價超過500元的商品,超過500元的部分可以享受打折優(yōu)惠.若購買商品的實際付款金額y(單位:元)與商品原價x(單位:元)的函數(shù)關(guān)系的圖像如圖所示,則超過500元的部分可以享受的優(yōu)惠是( )
A. 打六折B. 打七折C. 打八折D. 打九折
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com