【題目】如圖,直線y=﹣x+1與x軸,y軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx+c過點(diǎn)B,并且頂點(diǎn)D的坐標(biāo)為(﹣2,﹣1).
(1)求該拋物線的解析式;
(2)若拋物線與直線AB的另一個(gè)交點(diǎn)為F,點(diǎn)C是線段BF的中點(diǎn),過點(diǎn)C作BF的垂線交拋物線于點(diǎn)P,Q,求線段PQ的長(zhǎng)度;
(3)在(2)的條件下,點(diǎn)M是直線AB上一點(diǎn),點(diǎn)N是線段PQ的中點(diǎn),若PQ=2MN,直接寫出點(diǎn)M的坐標(biāo).
【答案】(1)y=x2+2x+1;(2)5;(3)M(,﹣)或(﹣,)
【解析】
(1)先求出點(diǎn)B坐標(biāo),再將點(diǎn)D,B代入拋物線的頂點(diǎn)式即可;
(2)如圖1,過點(diǎn)C作CH⊥y軸于點(diǎn)H,先求出點(diǎn)F的坐標(biāo),點(diǎn)C的坐標(biāo),再求出直線CM的解析式,最后可求出兩個(gè)交點(diǎn)及交點(diǎn)間的距離;
(3)設(shè)M(m,﹣m+1),如圖2,取PQ的中點(diǎn)N,連接MN,證點(diǎn)P,M,Q同在以PQ為直徑的圓上,所以∠PMQ=90°,利用勾股定理即可求出點(diǎn)M的坐標(biāo).
解:(1)在y=﹣x+1中,
當(dāng)x=0時(shí),y=1,
∴B(0,1),
∵拋物線y=ax2+bx+c過點(diǎn)B,并且頂點(diǎn)D的坐標(biāo)為(﹣2,﹣1),
∴可設(shè)拋物線解析式為y=a(x+2)2﹣1,
將點(diǎn)B(0,1)代入,
得,a=,
∴拋物線的解析式為:y=(x+2)2﹣1=x2+2x+1;
(2)聯(lián)立,
解得,或,
∴F(﹣5,),
∵點(diǎn)C是BF的中點(diǎn),
∴xC==﹣,yC==,
∴C(﹣,),
如圖1,過點(diǎn)C作CH⊥y軸于點(diǎn)H,
則∠HCB+∠CBH=90°,
又∵∠MCH+∠HCB=90°,
∴∠CBH=∠MCH,
又∠CHB=∠MHC=90°,
∴△CHB∽△MHC,
∴=,
即=,
解得,HM=5,
∴OM=OH+MH=+5=,
∴M(0,),
設(shè)直線CM的解析式為y=kx+,
將C(﹣,)代入,
得,k=2,
∴yCM=2x+,
聯(lián)立2x+=x2+2x+1,
解得,x1=,x2=﹣,
∴P(,5+),Q(﹣,﹣5+),
∴PQ==5;
(3)∵點(diǎn)M在直線AB上,
∴設(shè)M(m,﹣m+1),
如圖2,取PQ的中點(diǎn)N,連接MN,
∵PQ=2MN,
∴NM=NP=NQ,
∴點(diǎn)P,M,Q同在以PQ為直徑的圓上,
∴∠PMQ=90°,
∴MP2+MQ2=PQ2,
∴+ =(5)2,
解得,m1=,m2=﹣,
∴M(,﹣)或(﹣,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),且B點(diǎn)的坐標(biāo)為(3,0),經(jīng)過A點(diǎn)的直線交拋物線于點(diǎn)D (2, 3).
(1)求拋物線的解析式和直線AD的解析式;
(2)過x軸上的點(diǎn)E (a,0) 作直線EF∥AD,交拋物線于點(diǎn)F,是否存在實(shí)數(shù)a,使得以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BC⊥AB于點(diǎn)B,連接OC交⊙O于點(diǎn)E,弦AD∥OC,弦DF⊥AB于點(diǎn)G.
(1)求證:點(diǎn)E是弧BD的中點(diǎn);
(2)求證:CD是⊙O的切線;
(3)若tan∠ADG=,⊙O的半徑為5,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:y=ax2+bx+c(a<0)經(jīng)過A(2,4)、B(﹣1,1)兩點(diǎn),頂點(diǎn)坐標(biāo)為(h,k),則下列正確結(jié)論的序號(hào)是 .
①b>1;②c>2;③h<;④k≤1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)P是邊AC上一點(diǎn),過點(diǎn)P作PQ∥AB交BC于點(diǎn)Q,D為線段PQ的中點(diǎn),BD平分∠ABC,以下四個(gè)結(jié)論①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正確的結(jié)論的個(gè)數(shù)( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,.動(dòng)點(diǎn)以每秒個(gè)單位的速度從點(diǎn)開始向點(diǎn)移動(dòng),直線從與重合的位置開始,以相同的速度沿方向平行移動(dòng),且分別與邊交于兩點(diǎn),點(diǎn)與直線同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為秒,當(dāng)點(diǎn)移動(dòng)到與點(diǎn)重合時(shí),點(diǎn)和直線同時(shí)停止運(yùn)動(dòng).在移動(dòng)過程中,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使得點(diǎn)的對(duì)應(yīng)點(diǎn)落在直線上,點(diǎn)的對(duì)應(yīng)點(diǎn)記為點(diǎn),連接,當(dāng)時(shí),的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=3,AC=4,D為AC中點(diǎn),P為AB上的動(dòng)點(diǎn),將P繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到P′,連CP′的最小值為( 。
A.1.6B.2.4C.2D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,六個(gè)小朋友圍成一圈(面向圈內(nèi))做傳球游戲,規(guī)定:球不得傳給自己,也不得傳給左手邊的人.若游戲中傳球和接球都沒有失誤.
若由開始一次傳球,則和接到球的概率分別是 、 ;
若增加限制條件:“也不得傳給右手邊的人”.現(xiàn)在球已傳到手上,在下面的樹狀圖2中
畫出兩次傳球的全部可能情況,并求出球又傳到手上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).
(1)求拋物線M的函數(shù)表達(dá)式;
(2)設(shè)F(t,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1.
①拋物線M1的頂點(diǎn)B1的坐標(biāo)為 ;
②當(dāng)拋物線M1與線段AB有公共點(diǎn)時(shí),結(jié)合函數(shù)的圖象,求t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com