【題目】□ABCD,過點DDE⊥AB于點E,點F在邊CD上,DFBE,連接AF,BF.

1)求證:四邊形BFDE是矩形;

2)若CF3BF4,DF5,求證:AF平分∠DAB.

【答案】1)見解析(2)見解析

【解析】

試題(1)根據(jù)平行四邊形的性質(zhì),可得ABCD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;

(2)根據(jù)平行線的性質(zhì),可得DFA=FAB,根據(jù)等腰三角形的判定與性質(zhì),可得DAF=DFA,根據(jù)角平分線的判定,可得答案.

試題(1)證明:四邊形ABCD是平行四邊形,

ABCD

BEDFBE=DF,

四邊形BFDE是平行四邊形.

DEAB,

∴∠DEB=90°,

四邊形BFDE是矩形;

(2)四邊形ABCD是平行四邊形,

ABDC,

∴∠DFA=FAB

在RtBCF中,由勾股定理,得

BC===5,

AD=BC=DF=5,

∴∠DAF=DFA,

∴∠DAF=FAB,

AF平分DAB

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A、B兩點,點A的坐標為(2,3n),點B的坐標為(5n+2,1).

(1)求反比例函數(shù)與一次函數(shù)的表達式;

2)將一次函數(shù)y=kx+b的圖象沿y軸向下平移a個單位,使平移后的圖象與反比例函數(shù)y= 的圖象有且只有一個交點,求a的值;

(3)點Ey軸上一個動點,若SAEB=5,則點E的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某小區(qū)實施供暖改造工程,現(xiàn)甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中,正確的個數(shù)有( )個.

甲隊每天挖100米;

乙隊開挖兩天后,每天挖50米;

x=4時,甲、乙兩隊所挖管道長度相同;

甲隊比乙隊提前2天完成任務.

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】甲隊每天挖=100米,正確.

乙隊開挖兩天后,每天挖; 米,正確.

x=4時,甲、乙兩隊交點在x=4處,所以挖管道長度相同.正確.

知,甲挖完的時候,乙還有100米,1002. 甲隊比乙隊提前2天完成任務.正確.

故選D.

型】單選題
結(jié)束】
11

【題目】103 000用科學記數(shù)法表示為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD內(nèi)接于⊙O,點EAD上一點,連接AC,CB,B=AEC.

(1)如圖1,求證:CE=CD;

(2)如圖2,若∠B+CAE=120°,ACD=2BAC,求∠BAD的度數(shù);

3)如圖3,在(2)的條件下,延長CE交⊙O于點G,若tanBAC= ,EG=2,求AE的長.

【答案】(1)見解析;(2)60°;(3)7.

【解析】試題分析:(1)利用圓的內(nèi)接四邊形定理得到∠CED=∠CDE.

(2) CHDEH, ECH=α,由(1CE=CD,α表示CAEBAC,BAD=BAC+CAE.3連接AG,作GNACAMEG,先證明CAG=BAC,NG=5m,可得AN=11m,利用直角AGM, AEM,勾股定理可以算出m的值并求出AE.

試題解析:

1)解:證明:四邊形ABCD內(nèi)接于O.

∴∠B+∠D=180°,

∵∠B=∠AEC

∴∠AEC+∠D=180°,

∵∠AEC+∠CED=180°,

∴∠D=CED,

CE=CD

2)解:作CHDEH

ECH=α,由(1CE=CD,

∴∠ECD=2α,

∵∠B=∠AECB+∠CAE=120°,

∴∠CAE+∠AEC=120°,

∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,

∴∠CAE=90°﹣∠ACH=90°﹣60°+α=30°﹣α,

ACD=∠ACH+∠HCD=60°+2α,

∵∠ACD=2∠BAC

∴∠BAC=30°+α,

∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°

3)解:連接AG,作GNACAMEG,

∵∠CED=∠AEG,CDE=∠AGECED=∠CDE,

∴∠AEG=∠AGE,

AE=AG

EM=MG=EG=1,

∴∠EAG=∠ECD=2α

∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,

tanBAC=,

NG=5m,可得AN=11m,AG==14m,

∵∠ACG=60°,

CN=5m,AM=8m,MG==2m=1

m=,

CE=CD=CG﹣EG=10m﹣2=3,

AE===7

型】解答
結(jié)束】
27

【題目】二次函數(shù)y=x12+k分別與x軸、y軸交于A、BC三點,點A在點B的左側(cè),直線y=x+2經(jīng)過點B,且與y軸交于點D

(1)如圖1,求k的值;

(2)如圖2,在第一象限的拋物線上有一動點P,連接AP,過PPEx軸于點E,過EEFAP于點F,過點D作平行于x軸的直線分別與直線FE、PE交于點G、H,設點P的橫坐標為t,線段GH的長為d,求dt的函數(shù)關(guān)系式,并直接寫出t的取值范圍;

3)在(2)的條件下,過點G作平行于y軸的直線分別交AP、x軸和拋物線于點MTNtanMEA= ,點K為第四象限拋物線上一點,且在對稱軸左側(cè),連接KA,在射線KA上取一點R,連接RM,過點KKQAKPE的延長線于Q,連接AQ、HK,若∠RAERMA=45°,AKQ與△HKQ的面積相等,求點R的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正比例函數(shù)y=(2m+4)x,求:

(1)m為何值時,函數(shù)圖象經(jīng)過第一、三象限?

(2)m為何值時,y隨x的增大而減小?

(3)m為何值時,點(1,3)在該函數(shù)的圖象上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=﹣1,且經(jīng)A10)、

B0,﹣3)兩點.(1)求拋物線的解析式;

2)在拋物線的對稱軸x=﹣1上,是否存在點M,使它到點A的距離與到點B的距離之和最小,如果存在求出點M的坐標,如果不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,中點,過點的直線分別與,交于點,連結(jié),交于點,連結(jié),.若,則下列結(jié)論:①;②垂直平分線段;③;④四邊形是菱形.其中正確結(jié)論的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對非負實數(shù)x“四含五入到個位的值記為,即當n為非負整數(shù)時,若n-≤x<n+,則=n.如:,……根據(jù)以上材料,解決下列問題:

(1)填空= ,= ;

2)若,則x的取值范圍是 ;

(3)求滿足的所有實數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.

(1)求A,B兩種品牌的足球的單價.

(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.

查看答案和解析>>

同步練習冊答案