【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
【答案】(1)見解析(2)見解析
【解析】
試題(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;
(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.
試題(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四邊形BFDE是平行四邊形.
∵DE⊥AB,
∴∠DEB=90°,
∴四邊形BFDE是矩形;
(2)∵四邊形ABCD是平行四邊形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC===5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A、B兩點,點A的坐標為(2,3n),點B的坐標為(5n+2,1).
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)將一次函數(shù)y=kx+b的圖象沿y軸向下平移a個單位,使平移后的圖象與反比例函數(shù)y= 的圖象有且只有一個交點,求a的值;
(3)點E為y軸上一個動點,若S△AEB=5,則點E的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某小區(qū)實施供暖改造工程,現(xiàn)甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中,正確的個數(shù)有( )個.
①甲隊每天挖100米;
②乙隊開挖兩天后,每天挖50米;
③當x=4時,甲、乙兩隊所挖管道長度相同;
④甲隊比乙隊提前2天完成任務.
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】①甲隊每天挖=100米,正確.
②乙隊開挖兩天后,每天挖; 米,正確.
③當x=4時,甲、乙兩隊交點在x=4處,所以挖管道長度相同.正確.
④由②知,甲挖完的時候,乙還有100米,1002. 甲隊比乙隊提前2天完成任務.正確.
故選D.
【題型】單選題
【結(jié)束】
11
【題目】103 000用科學記數(shù)法表示為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD內(nèi)接于⊙O,點E為AD上一點,連接AC,CB,∠B=∠AEC.
(1)如圖1,求證:CE=CD;
(2)如圖2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度數(shù);
(3)如圖3,在(2)的條件下,延長CE交⊙O于點G,若tan∠BAC= ,EG=2,求AE的長.
【答案】(1)見解析;(2)60°;(3)7.
【解析】試題分析:(1)利用圓的內(nèi)接四邊形定理得到∠CED=∠CDE.
(2) 作CH⊥DE于H, 設∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)連接AG,作GN⊥AC,AM⊥EG,先證明∠CAG=∠BAC,設NG=5m,可得AN=11m,利用直角AGM, AEM,勾股定理可以算出m的值并求出AE長.
試題解析:
(1)解:證明:∵四邊形ABCD內(nèi)接于⊙O.
∴∠B+∠D=180°,
∵∠B=∠AEC,
∴∠AEC+∠D=180°,
∵∠AEC+∠CED=180°,
∴∠D=∠CED,
∴CE=CD.
(2)解:作CH⊥DE于H.
設∠ECH=α,由(1)CE=CD,
∴∠ECD=2α,
∵∠B=∠AEC,∠B+∠CAE=120°,
∴∠CAE+∠AEC=120°,
∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,
∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,
∠ACD=∠ACH+∠HCD=60°+2α,
∵∠ACD=2∠BAC,
∴∠BAC=30°+α,
∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.
(3)解:連接AG,作GN⊥AC,AM⊥EG,
∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,
∴∠AEG=∠AGE,
∴AE=AG,
∴EM=MG=EG=1,
∴∠EAG=∠ECD=2α,
∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,
∵tan∠BAC=,
∴設NG=5m,可得AN=11m,AG==14m,
∵∠ACG=60°,
∴CN=5m,AM=8m,MG==2m=1,
∴m=,
∴CE=CD=CG﹣EG=10m﹣2=3,
∴AE===7.
【題型】解答題
【結(jié)束】
27
【題目】二次函數(shù)y=(x﹣1)2+k分別與x軸、y軸交于A、B、C三點,點A在點B的左側(cè),直線y=﹣x+2經(jīng)過點B,且與y軸交于點D.
(1)如圖1,求k的值;
(2)如圖2,在第一象限的拋物線上有一動點P,連接AP,過P作PE⊥x軸于點E,過E作EF⊥AP于點F,過點D作平行于x軸的直線分別與直線FE、PE交于點G、H,設點P的橫坐標為t,線段GH的長為d,求d與t的函數(shù)關(guān)系式,并直接寫出t的取值范圍;
(3)在(2)的條件下,過點G作平行于y軸的直線分別交AP、x軸和拋物線于點M、T和N,tan∠MEA= ,點K為第四象限拋物線上一點,且在對稱軸左側(cè),連接KA,在射線KA上取一點R,連接RM,過點K作KQ⊥AK交PE的延長線于Q,連接AQ、HK,若∠RAE﹣∠RMA=45°,△AKQ與△HKQ的面積相等,求點R的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=(2m+4)x,求:
(1)m為何值時,函數(shù)圖象經(jīng)過第一、三象限?
(2)m為何值時,y隨x的增大而減小?
(3)m為何值時,點(1,3)在該函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且經(jīng)A(1,0)、
B(0,﹣3)兩點.(1)求拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上,是否存在點M,使它到點A的距離與到點B的距離之和最小,如果存在求出點M的坐標,如果不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,為中點,過點的直線分別與,交于點,,連結(jié),交于點,連結(jié),.若,,則下列結(jié)論:①;②垂直平分線段;③;④四邊形是菱形.其中正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對非負實數(shù)x“四含五入”到個位的值記為,即當n為非負整數(shù)時,若n-≤x<n+,則=n.如:,,……根據(jù)以上材料,解決下列問題:
(1)填空= ,= ;
(2)若,則x的取值范圍是 ;
(3)求滿足的所有實數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價.
(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com