【題目】計(jì)算:
(1);
(2)(-2a3)23a3+6a12÷(-2a3);
(3)(x+1)(x-2)-(x-2)2;
(4)(a+2b+3)(a+2b-3)
【答案】(1)-11;(2)9a9;(3)3x-6;(4)a2+4ab+b2-9
【解析】
(1)先算乘方,再算加減法即可;
(2)根據(jù)同底數(shù)冪的運(yùn)算法則,先算乘法和除法,再算減法即可;
(3)先算乘方和乘法去括號(hào),再合并同類項(xiàng)即可;
(4)把看成一個(gè)整體,利用平方差公式化簡求解即可.
(1)原式=-3-9+1
=-11
(2)原式=4a63a3+6a12÷(-2a3)
=12a9-3a9
=9a9
(3)原式=x2-x-2-(x2-4x+4)
=x2-x-2-x2+4x-4
=3x-6
(4)原式=(a+2b)2-32
=a2+4ab+b2-9
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,是線段上的一個(gè)動(dòng)點(diǎn),分別以為邊,在的同側(cè)構(gòu)造菱形和菱形,三點(diǎn)在同一條直線上連結(jié),設(shè)射線與射線交于.
(1)當(dāng)在點(diǎn)的右側(cè)時(shí),求證:四邊形是平形四邊形.
(2)連結(jié),當(dāng)四邊形恰為矩形時(shí),求的長.
(3)如圖2,設(shè),,記點(diǎn)與之間的距離為,直接寫出的所有值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)c在直線AB上,若AC= 4cm,BC= 6cm,E、F分別為線段AC、BC的中點(diǎn),則EF=________________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形,,,…按如圖所示的方式放置.點(diǎn),,,…和點(diǎn),,,…分別在直線和軸上,則點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)交于A(2,4),B(a,1),與x軸,y軸分別交于點(diǎn)C,D.
(1)直接寫出一次函數(shù)y=kx+b的表達(dá)式和反比例函數(shù)y=(x>0)的表達(dá)式;
(2)求證:AD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲同學(xué)在拼圖探索活動(dòng)中發(fā)現(xiàn),用4個(gè)形狀大小完全相同的直角三角形(直角邊長分別為a,b,斜邊長為c),可以拼成像如圖1那樣的正方形,并由此得出了關(guān)于a2,b2,c2的一個(gè)等式.
(1)請(qǐng)你寫出這一結(jié)論:______,并給出驗(yàn)證過程.
(2)試用上述結(jié)論解決問題:如圖2,P是Rt△ABC斜邊AB上的一個(gè)動(dòng)點(diǎn),已知AC=5,AB=13,求PC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,點(diǎn)在邊上(與、不重合),四邊形為正方形,過點(diǎn)作,交的延長線于點(diǎn),連接,交于點(diǎn),對(duì)于下列結(jié)論:①;②四邊形是矩形;③.其中正確的是( )
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 與軸交于點(diǎn) ,依次作正方形 、正方形 、……正方形 ,使得點(diǎn)、…, 在直線 上,點(diǎn) 在軸上,則點(diǎn) 的坐標(biāo)是________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com