【題目】如圖,小明同學測量一個光盤的直徑,他只有一把直尺和一塊三角板,他將直尺、光盤和三角板如圖放置于桌面上,并量出AB=3.5cm,則此光盤的直徑是( )cm.
A.7
B.
C.
D.14
【答案】C
【解析】解:設(shè)圓的圓心是O,連接OB,OA. ∵AB=3.5cm,∠OAB= ×120°=60°,
∴tan60°= ,
∴OB=AB = ,
∴圓的直徑是7 cm.
故選C.
【考點精析】關(guān)于本題考查的切線的性質(zhì)定理和解直角三角形,需要了解切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,⊙O的直徑AB與弦AC的夾角∠A=30°,AC=CP.
(1)求證:CP是⊙O的切線;
(2)若AB=4 ,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,BD是它的一條對角線,過A、C兩點作AE⊥BD,CF⊥BD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N.
(1)求證:四邊形CMAN是平行四邊形.
(2)已知DE=2,F(xiàn)N=1,求BN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+3與x軸,y軸分別交于A,B兩點,tan∠OAB= ,點C(x,y)是直線y=kx+3上與A,B不重合的動點.
(1)求直線y=kx+3的解析式;
(2)當點C運動到什么位置時△AOC的面積是6;
(3)過點C的另一直線CD與y軸相交于D點,是否存在點C使△BCD與△AOB相似,且△BCD的面積是△AOB的面積的 ?若存在,請求出點C的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)(﹣5.3)+(3.2)﹣(﹣2.5)﹣(+4.8)
(2)﹣2÷(﹣2)×(﹣4.5)
(3)﹣24×()
(4)﹣22﹣(﹣)3×8﹣4÷(﹣)2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF. 若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于點A(﹣2,﹣5 ),C (5,n),交y軸于點B,交x軸于點D,那么不等式kx+b﹣ >0的解集是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4)、點B(﹣4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足為D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為E.
(1)求證:四邊形ADCE是矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是正方形?給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com