【題目】如圖,拋物線yax25axca0)與x軸負(fù)半軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn),D是拋物線的頂點(diǎn),過(guò)DDHx軸于點(diǎn)H,延長(zhǎng)DHAC于點(diǎn)E,且SABDSACB916,

1)求A、B兩點(diǎn)的坐標(biāo);

2)若△DBH與△BEH相似,試求拋物線的解析式.

【答案】(1) ;(2) 見解析.

【解析】

1 根據(jù)頂點(diǎn)公式求出D坐標(biāo)(利用ab,c表示),得到OC,DH(利用a,b,c表示)值,因?yàn)?/span>SABDSACB916,所以得到DH:OC=9:16,得到c=4a,利用交點(diǎn)式得出A,B即可.

2 由題意可以得到,求出DH,EH(利用a表示),因?yàn)?△DBH與△BEH相似,得到,即可求出a(注意舍棄正值),得到解析式.

解:(1

C(0c) OC=-c,DH= SABDSACB916

2)① ∵EHOC ∴△AEH∽△ACO

∵△DBH與△BEH相似

∴∠BDH=EBH, 又∵∠BHD=BHE=90°∴△DBHBEH

(舍去正值)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y4x與雙曲線y交于A,B兩點(diǎn),過(guò)B作直線BCy軸,垂足為C,則以OA為直徑的圓與直線BC的交點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)分別與軸、軸交于點(diǎn).頂點(diǎn)為的拋物線經(jīng)過(guò)點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)為第一象限拋物線上一動(dòng)點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為的面積為.當(dāng)為何值時(shí),的值最大,并求的最大值;

3)在(2)的結(jié)論下,若點(diǎn)軸上,為直角三角形,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)P是一個(gè)反比例函數(shù)的圖象與正比例函數(shù)y=﹣2x的圖象的公共點(diǎn),PQ垂直于x軸,垂足Q的坐標(biāo)為(2,0).

1)求這個(gè)反比例函數(shù)的解析式;

2)如果點(diǎn)M在這個(gè)反比例函數(shù)的圖象上,且MPQ的面積為6,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,∠ABC90°,ABBC2,現(xiàn)將RtABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到△AED,則圖中陰影部分的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從燈塔處觀測(cè)輪船的位置,測(cè)得輪船在燈塔北偏西的方向,輪船在燈塔北偏東的方向,且海里,海里,已知,求兩艘輪船之間的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABO的弦,點(diǎn)CO上,且,聯(lián)結(jié)AOCO,并延長(zhǎng)CO交弦AB于點(diǎn)D,AB4,CD6

1)求∠OAB的大小;

2)若點(diǎn)EO上,BEAO,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)【問(wèn)題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問(wèn)題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx2k≠0)與y軸交于點(diǎn)A,與雙曲線y在第一象限內(nèi)交于點(diǎn)B(3,b),在第三象限內(nèi)交于點(diǎn)C

1)求雙曲線的解析式;

2)直接寫出不等式x2的解集;

3)若ODAB,在第一象限交雙曲線于點(diǎn)D,連接AD,求SAOD

查看答案和解析>>

同步練習(xí)冊(cè)答案