【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學我最喜愛的體育項目進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有_____名學生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,乒乓球部分所對應的圓心角度數(shù)為_____;

(4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

【答案】 50 見解析(3)115.2° (4)

【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學生數(shù);

(2)用學生的總人數(shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計圖補充完整;

(3)根據(jù)圓心角的度數(shù)=360 ×它所占的百分比計算;

(4)列出樹狀圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,從而可求出答案.

解:(1)由題意可知該班的總人數(shù)=15÷30%=50(名)

故答案為:50;

(2)足球項目所占的人數(shù)=50×18%=9(名),所以其它項目所占人數(shù)=50﹣15﹣9﹣16=10(名)

補全條形統(tǒng)計圖如圖所示:

(3)“乒乓球部分所對應的圓心角度數(shù)=360°×=115.2°,

故答案為:115.2°;

(4)畫樹狀圖如圖.

由圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,

所以P(恰好選出一男一女)==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰△ABC的周長為21,底邊BC5,AB的垂直平分線DEAB于點D,交AC于點E,則△BEC的周長為(  )

A. 13B. 16C. 8D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=2,A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則cosEFG的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角三角板ABC的直角頂點C在直線DE上,CF平分∠BCD

1)在圖1中,若∠BCE=40°,求∠ACF的度數(shù);

2)在圖1中,若∠BCE=α,直接寫出∠ACF的度數(shù)(用含α的式子表示);

3)將圖1中的三角板ABC繞頂點C旋轉至圖2的位置,探究:寫出∠ACF與∠BCE的度數(shù)之間的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AP,Q,B在一條不完整的數(shù)軸上,點A表示數(shù)-3,點B表示數(shù)3,若動點P從點A出發(fā)以每秒1個單位長度向終點B勻速運動,同時動點Q從點B出發(fā)以每秒2個單位長度向終點A勻速運動,其中一點到達終點時,另一個點也隨之停止運動,當BP=3AQ時,點P在數(shù)軸上表示的數(shù)是( )

A.2.4B.-1.8C.0.6D.-0.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為拓寬銷售渠道,某水果商店計劃將146個柚子和400個橙子裝入大、小兩種禮箱進行出售,其中每件小禮箱裝2個柚子和4個橙子;每件大禮箱裝3個柚子和9個橙子.要求每件禮箱都裝滿,柚子恰好全部裝完,橙子有剩余,設小禮箱的數(shù)量為x.

1)大禮箱的數(shù)量為________(用含x的代數(shù)式表示).

2)若橙子剩余12個,則需要大、小兩種禮箱共多少件?

3)由于橙子有剩余,則小禮箱至少需要________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過正方形ABCD的頂點DDEACBC的延長線于點E

1)判斷四邊形ACED的形狀,并說明理由;

2)若BD=8cm,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點B恰好落在CD邊的中點E, 折痕為AF,若CD=6,則AF等于__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AD是中線,EAD的中點,過點AAFBCBE的延長線于F,連接CF,求證:四邊形ADCF是菱形.

查看答案和解析>>

同步練習冊答案