【題目】某校組織學(xué)生到距離學(xué)校6千米的科技館去參觀,小華因事沒能乘上學(xué)校的包車,于是準(zhǔn)備在學(xué)校門口改乘出租車去科技館,出租車收費(fèi)標(biāo)準(zhǔn)有兩種類型,如下表:
里程 | 甲類收費(fèi)(元) | 乙類收費(fèi)(元) |
3千米以下(包含3千米) | 7.00 | 6.00 |
3千米以上,每增加1千米 | 1.60 | 1.40 |
(1)設(shè)出租車行駛的里程為x千米(且x取正整數(shù)),分別寫出兩種類型的總收費(fèi)(用含x的代數(shù)式表示);
(2)小華身上僅有11元,他乘出租車到科技館車費(fèi)夠不夠請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=bx+c和反比例函數(shù)y=在同一平面直角坐標(biāo)系中的圖象大致是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖:在直角坐標(biāo)系中,正方形AOBC的邊長為4,點(diǎn)D、E分別是線段AO,OC上的動點(diǎn),D點(diǎn)由A點(diǎn)向O點(diǎn)運(yùn)動,速度為每秒1個單位,E點(diǎn)由B點(diǎn)向O點(diǎn)運(yùn)動,速度為每秒2個單位,當(dāng)一個點(diǎn)停止運(yùn)動時,另一個點(diǎn)也隨之停止.設(shè)運(yùn)動時間為t(秒)
(1)如圖1,當(dāng)t為何值時,△DOE的面積為6;
(2)如圖2,連結(jié)CD,AE交于點(diǎn)F,當(dāng)t為何值時,CD⊥AE;
(3)如圖3,過點(diǎn)D作DG//OB,交BC于點(diǎn)G,連結(jié)EG,當(dāng)D,E在運(yùn)動過程中,直角坐標(biāo)系中是否存在點(diǎn)H,使得點(diǎn)D,E,H,G四點(diǎn)構(gòu)成的四邊形為菱形?若存在,求出t的值,并直接寫出點(diǎn)G的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將自然數(shù)按如表規(guī)律排列,表中數(shù)2在第二行第一列,與有序數(shù)對對應(yīng),數(shù)5與對應(yīng),數(shù)14與對應(yīng),根據(jù)這一規(guī)律,數(shù)2014對應(yīng)的有序數(shù)對為__________.
第一列 | 第二列 | 第三列 | 第四列 | 第五列 | ||
第一行 | 1 | 4 | 5 | 16 | 17 | … |
第二行 | 2 | 3 | 6 | 15 | … | |
第三行 | 9 | 8 | 7 | 14 | … | |
第四行 | 10 | 11 | 12 | 13 | … | |
第五行 | … | |||||
…… |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式及點(diǎn)C的坐標(biāo);
(2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點(diǎn)P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)如圖(2),連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合)經(jīng)過A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,當(dāng)△OEF的面積取得最小值時,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊AB,AC的中點(diǎn),延長BC到點(diǎn)F,使CF= BC.若AB=10,則EF的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=60°,將△ABC沿對角線AC折疊,點(diǎn)B的對應(yīng)點(diǎn)落在點(diǎn)E處,且點(diǎn)B,A,E在一條直線上,CE交AD于點(diǎn)F,則圖中等邊三角形共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若反比例函數(shù)y= (k≠0)的圖象經(jīng)過P(﹣2,3),則該函數(shù)不經(jīng)過的圖象的點(diǎn)是( )
A.(3,﹣2)
B.(1,﹣6)
C.(﹣1,6)
D.(﹣1,﹣6)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com