【題目】如圖,E是BC邊上一點(diǎn),AB⊥BC于點(diǎn)B,DC⊥BC于點(diǎn)C,AB=BC,∠A=∠CBD,AE與BD交于點(diǎn)O,有下列結(jié)論:①AE=BD;②AE⊥BD;③BE=CD;④△AOB的面積等于四邊形CDOE的面積.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)實(shí)生活中,如果收入1000元記作+1000元,那么﹣800表示( 。
A. 支出800元 B. 收入800元 C. 支出200元 D. 收入200元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)要經(jīng)營一種新上市的文具,進(jìn)價(jià)為20元/件。試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)25元/件時(shí),每天的銷售量是250件;銷售單價(jià)每上漲1元,每天的銷售量就減少10件。
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式。
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大?
(3)商場(chǎng)的營銷部結(jié)合上述情況,提出了A,B兩種營銷方案:
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元。
請(qǐng)比較哪種方案的最大利潤更高,并說明理由。(本題12分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(a-1,a+b),B(a,0),且(a+b-3)2+|a-2b|=0,C為x軸上點(diǎn)B右側(cè)的動(dòng)點(diǎn),以AC為腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直線DB交y軸于點(diǎn)P.
(1)線段AO與線段AB的數(shù)量關(guān)系是______(填“>”、“≥”、“≤”、“<”或“=”);
(2)求證:△AOC≌△ABD;
(3)若∠CAD=30,當(dāng)點(diǎn)C運(yùn)動(dòng)時(shí),點(diǎn)P在y軸上的位置是否發(fā)生改變,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)你做評(píng)委:在一堂數(shù)學(xué)活動(dòng)課上,同在一合作學(xué)習(xí)小組的小明、小亮、小丁、小彭對(duì)剛學(xué)過的知識(shí)發(fā)表了自己的一些感受:
小明說:“絕對(duì)值不大于4的整數(shù)有7個(gè).”
小丁說:“若|a|=3,|b|=2,則a+b的值為5或1.”
小亮說:“﹣ <﹣,因?yàn)閮蓚(gè)負(fù)數(shù)比較大小,絕對(duì)值大的數(shù)反而。”
小彭說:“代數(shù)式a2+b2表示的意義是a與b的和的平方”
依次判斷四位同學(xué)的說法是否正確,如不正確,請(qǐng)幫他們修正,寫出正確的說法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD和△ACE中,有下列判斷:
①AB=AC;②∠B=∠C;③∠BAC=∠EAD;④AD=AE.
請(qǐng)用其中的三個(gè)判斷作為條件,余下的一個(gè)判斷作為結(jié)論(用序號(hào)的形式),寫出一個(gè)由三個(gè)條件能推出結(jié)論成立的式子,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名考生步行前往考場(chǎng),5分鐘走了總路程的,估計(jì)步行不能準(zhǔn)時(shí)到達(dá),于是他改乘出租車趕往考場(chǎng),他的行程與時(shí)間關(guān)系如圖所示(假定總路程為1,出租車勻速),則他到達(dá)考場(chǎng)所花的時(shí)間比一直步行提前了________分鐘。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB>AC,BE,CF都是△ABC的高線,P是BE上一點(diǎn),且BP=AC,Q是CF延長線上一點(diǎn),且CQ=AB,連結(jié)AP,AQ,QP.求證:
(1)AQ=PA.
(2)AP⊥AQ.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com