【題目】已知△ABC是等腰直角三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰Rt△PCQ,∠PCQ=90°.探究并解決下列問(wèn)題:
(1)如圖1,若點(diǎn)P在線段AB上,且AC=1+,PA=,求線段PC的長(zhǎng).
(2)如圖2,若點(diǎn)P在AB的延長(zhǎng)線上,猜想PA2、PB2、PC2之間的數(shù)量關(guān)系,并證明.
(3)若動(dòng)點(diǎn)P滿(mǎn)足,則的值為 .
【答案】(1)2;(2)AP2+BP2=PQ2.理由見(jiàn)解析;(3)或.
【解析】
(1)在等腰直角三角形ACB中,由勾股定理先求得AB的長(zhǎng),然后根據(jù)PA的長(zhǎng),可求得PB的長(zhǎng);過(guò)點(diǎn)C作CD⊥AB,垂足為D,從而可求得CD、PD的長(zhǎng),然后在Rt三角形CDP中依據(jù)勾股定理可求得PC的長(zhǎng);
(2)過(guò)點(diǎn)C作CD⊥AB,垂足為D,則AP=(AD+PD)=(DC+PD),PB=(DP-BD)=(PD-DC),可證明AP2+BP2=2PC2,因?yàn)樵?/span>Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的結(jié)論;
(3)根據(jù)點(diǎn)P所在的位置畫(huà)出圖形,然后依據(jù)題目中的比值關(guān)系求得PD的長(zhǎng)(用含有CD的式子表示),然后在Rt△ACP和Rt△DCP中由勾股定理求得AC和PC的長(zhǎng)度即可.
解:(1)如圖①所示:
∵△ABC是等腰直直角三角形,AC=,
∴AB= ,
∵PA=,
∴PB=AB﹣PA=,
∵△ABC和△PCQ均為等腰直角三角形,
∴AC=BC,PC=CQ,∠ACB=∠PCQ,
∴∠ACP=∠BCQ,
在△APC和△BQC中,,
∴△APC≌△BQC(SAS).
∴BQ=AP=,∠CBQ=∠A=45°.
∴△PBQ為直角三角形.
∴PQ=.
∴PC=PQ=2.
故答案為:2;
(2)AP2+BP2=PQ2.理由如下:
如圖②:過(guò)點(diǎn)C作CD⊥AB,垂足為D.
∵△ACB為等腰直角三角形,CD⊥AB,
∴CD=AD=DB.
∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DCPD+PD2,
PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DCPD+PD2,
∴AP2+BP2=2CD2+2PD2,
∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,
∴AP2+BP2=2PC2.
∵△CPQ為等腰直角三角形,
∴2PC2=PQ2.
∴AP2+BP2=PQ2.
(3)如圖③:過(guò)點(diǎn)C作CD⊥AB,垂足為D.
①當(dāng)點(diǎn)P位于點(diǎn)P1處時(shí).
,
.
.
在Rt△CP1D中,由勾股定理得: ,
在Rt△ACD中,由勾股定理得:,
.
②當(dāng)點(diǎn)P位于點(diǎn)P2處時(shí).
,
∴P2A=AB=DC.
在Rt△CP2D中,由勾股定理得:,
在Rt△ACD中,由勾股定理得: ,
.
綜上所述,的比值為或;
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在教學(xué)樓距地面8米高的窗口中C處,測(cè)得正前方旗桿頂部A點(diǎn)的仰角為37°,旗桿底部B點(diǎn)的俯角為45°.升旗時(shí),國(guó)旗上端懸掛在距地面2米處.若國(guó)旗隨國(guó)歌聲冉冉升起,并在國(guó)歌播放40秒結(jié)束時(shí)到達(dá)旗桿頂端,則國(guó)旗應(yīng)以多少米/秒的速度勻速上升?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:
①該產(chǎn)品90天內(nèi)日銷(xiāo)售量(m件)與時(shí)間(第x天)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
時(shí)間(第x天) | 1 | 3 | 6 | 10 | … |
日銷(xiāo)售量(m件) | 198 | 194 | 188 | 180 | … |
②該產(chǎn)品90天內(nèi)每天的銷(xiāo)售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間(第x天) | 1≤x<50 | 50≤x≤90 |
銷(xiāo)售價(jià)格(元/件) | x+60 | 100 |
(1)求m關(guān)于x的一次函數(shù)表達(dá)式;
(2)設(shè)銷(xiāo)售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?【提示:每天銷(xiāo)售利潤(rùn)=日銷(xiāo)售量×(每件銷(xiāo)售價(jià)格-每件成本)】
(3)在該產(chǎn)品銷(xiāo)售的過(guò)程中,共有多少天銷(xiāo)售利潤(rùn)不低于5400元,請(qǐng)直接寫(xiě)出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的方格圖中,我們稱(chēng)每個(gè)小正方形的頂點(diǎn)為“格點(diǎn)”,以格點(diǎn)為頂點(diǎn)的三角形叫做“格點(diǎn)三角形”,根據(jù)圖形,回答下列問(wèn)題.
(1)圖中格點(diǎn)三角形A′B′C′是由格點(diǎn)三角形ABC通過(guò)怎樣的平移得到的?
(2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-3,4),請(qǐng)寫(xiě)出格點(diǎn)三角形DEF各頂點(diǎn)的坐標(biāo),并求出三角形DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某日通過(guò)高速公路收費(fèi)站的汽車(chē)中,共有3000輛次繳了通行費(fèi),其中大車(chē)每輛次繳費(fèi)20元,小車(chē)每輛次繳費(fèi)10元.設(shè)這一天小車(chē)?yán)U通行費(fèi)的輛次為x,總的通行費(fèi)收入為y元。
(1)試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式,y是x的一次函數(shù)嗎?是正比例函數(shù)嗎?
(2)若小車(chē)?yán)U通行費(fèi)的輛次為1000,這天的通行費(fèi)收入是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形ABCD,對(duì)角線交點(diǎn)為O,延長(zhǎng)CD至E且CD=DE.下列判斷正確個(gè)數(shù)是( 。
(1)∠AOB=90°;(2)AE=2OD;(3)∠OAE=90°;(4)∠AEO=∠CEO.
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:
(1)有4張桌子,用第一種擺設(shè)方式,可以坐___________人;當(dāng)有 張桌子時(shí),用第二種擺設(shè)方式可以坐___________人(用含有n的代數(shù)式表示).
(2)一天中午,餐廳要接待85位顧客共同就餐,但餐廳中只有20張這樣的長(zhǎng)方形桌子可用,且每4張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來(lái)擺放餐桌,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】旺財(cái)水果店每天都會(huì)進(jìn)一些草莓銷(xiāo)售,在一周銷(xiāo)售過(guò)程中他發(fā)現(xiàn)每天的銷(xiāo)售量y(單位:千克)會(huì)隨售價(jià)x(單位:元/千克)而變化,部分?jǐn)?shù)據(jù)記錄如表
售價(jià)x(單位:元/千克) | 30 | 25 | 20 |
每天銷(xiāo)售量y(單位:千克) | 5 | 55 | 105 |
如果已知草莓每天銷(xiāo)量y與售價(jià)x(30.5>x>14)滿(mǎn)足一次函數(shù)關(guān)系.
(1)請(qǐng)根據(jù)表格中數(shù)據(jù)求出這個(gè)一次函數(shù)關(guān)系式;
(2)如果進(jìn)價(jià)為14元/千克,請(qǐng)判斷售價(jià)分別定為20元/千克和25元/千克,哪天的銷(xiāo)售利潤(rùn)更高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的“漢字聽(tīng)寫(xiě)”大賽預(yù)賽,各參賽選手的成績(jī)?nèi)缦拢?/span>
九(1)班:88,91,92,93,93,93,94,98,98,100;
九(2)班:89,93,93,93,95,96,96,98,98,99.
通過(guò)整理,得到數(shù)據(jù)分析表如下:
班級(jí) | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
九(1)班 | 100 | m | 93 | 93 | 12 |
九(2)班 | 99 | 95 | n | p | 8.4 |
(1)直接寫(xiě)出表中m、n、p的值為:m=______,n=______,p=______;
(2)依據(jù)數(shù)據(jù)分析表,有人說(shuō):“最高分在(1)班,(1)班的成績(jī)比(2)班好.”但也有人說(shuō)(2)班的成績(jī)要好.請(qǐng)給出兩條支持九(2)班成績(jī)更好的理由;
(3)學(xué)校確定了一個(gè)標(biāo)準(zhǔn)成績(jī),等于或大于這個(gè)成績(jī)的學(xué)生被評(píng)定為“優(yōu)秀”等級(jí),如果九(2)班有一半的學(xué)生能夠達(dá)到“優(yōu)秀”等級(jí),你認(rèn)為標(biāo)準(zhǔn)成績(jī)應(yīng)定為______分,請(qǐng)簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com