【題目】定義新運算:.
例如:32=3(3-2)=3,-14=-1(-1-4)=5.
(1)請直接寫出3a=b的所有正整數解;
(2)已知2a=5b-2m,3b=5a+m,說明:12a+11b的值與m無關;
(3)已知a>1,記M=abb,N=bab,試比較M,N的大小.
【答案】(1)(2)22(3)M≥N
【解析】分析:(1)根據ab=a(a-b),可以求得3a=b,再求出其整數解即可;
(2)根據題意可列出方程組,通過整理得12a+11b=22,故可得結論;
(3)分別用含有a,b的代數式表示M、N,然后再作差比較即可.
詳解:∵
∴3a=b=3(3-a)=9-3a,
∵a,b為整數,
∴;
(2)∵2a=5b-2m,3b=5a+m,
∴
整理得:
②×2+①得 10a+6b+5b+2a=18-2m+4+2m
即12a+11b=22
(3)M=ab(ab-b),N=b(b-ab)
∴M-N= ab(ab-b)- b(b-ab)
=
=
=
∵a>1,b2≥0
∴≥0
即:M-N≥0
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線l3上有點P(點P與點C、D不重合),點A在直線l1上,點B在直線l2上。
(1)如果點P在C、D之間運動時,試說明∠1+∠3=∠2;
(2)如果點P在直線l1的上方運動時,試探索∠1,∠2,∠3之間的關系又是如何?
(3)如果點P在直線l2的下方運動時,試探索∠PAC,∠PBD,∠APB之間的關系又是如何? (直接寫出結論)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于_______.
【答案】10或6
【解析】試題解析:根據題意畫出圖形,如圖所示,
如圖1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據勾股定理得:BD==8,CD==2,
此時BC=BD+CD=8+2=10;
如圖2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據勾股定理得:BD==8,CD==2,
此時BC=BD-CD=8-2=6,
則BC的長為6或10.
【題型】填空題
【結束】
12
【題目】在平面直角坐標系中,已知一次函數y=2x+1的圖象經過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC=4,點D為AB的中點,M,N分別在BC,AC上,且BM=CN現有以下四個結論:
①DN=DM; ② ∠NDM=90°; ③ 四邊形CMDN的面積為4; ④△CMN的面積最大為2.
其中正確的結論有( )
A. ①②④; B. ①②③; C. ②③④; D. ①②③④.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.
(1)試說明:AB∥CD;
(2)若∠2=35°,求∠BFC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知⊙O是以BC為直徑的△ABC的外接圓,OP∥AC,且與BC的垂線交于點P,OP交AB于點D,BC、PA的延長線交于點E.
(1)求證:PA是⊙O的切線;
(2)若sinE= ,PA=6,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A = ∠D,試說明 AC∥DE 成立的理由.
下面是彬彬同學進行的推理,請你將彬彬同學的推理過程補充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (兩直線平行,內錯角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代換)
∴ AC ∥ DE ( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一副三角板按如圖所示疊放在一起,若固定,將繞著公共頂點,按順時針方向旋轉度,當的一邊與的某一邊平行時,相應的旋轉角的度數為_________________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】這個周末,七年級準備組織觀看電影《我和我的祖國》,由各班班長負責買票,一班班長問售票員買團體票是否可以優(yōu)惠,售票員說:50人以上的團體票有兩個優(yōu)惠方案可選擇:
方案一:全體人員可打8折;
方案二:若打9折,有6人可以免票.
一班班長思考了一會兒,說我們班無論選擇哪種方案要付的錢是一樣的,請問一班有幾人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com