【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(1,0),B點(diǎn)坐標(biāo)為(5,0)點(diǎn)C(0,5),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積.
【答案】(1)y= -x2+4x+5;(2)15
【解析】
(1)設(shè)交點(diǎn)式y=a(x+1)(x-5),然后把C(0,5)代入求出a即可得到拋物線解析式;
(2)先把解析式配成頂點(diǎn)式,然后寫(xiě)出M點(diǎn)的坐標(biāo),再過(guò)M作MD⊥x軸,根據(jù)△MCB的面積=梯形MCOD的面積+△MDB的面積-△COB的面積求解.
(1)設(shè)y=a(x+1)(x-5),代入(0,5),得:a= -1
y= -(x+1)(x-5),
∴y= -x2+4x+5
(2)y=-x2+4x+5=-(x-2)2+9,則M(2,9),
所以頂點(diǎn)M(2,9);
過(guò)M作MD⊥x軸,如圖,
∵A點(diǎn)坐標(biāo)為(1,0),B點(diǎn)坐標(biāo)為(5,0)
∴AB=6,AD=BD=3
∴OD=2
又C(0,5),
∴△MCB的面積=梯形MCOD的面積+△MDB的面積-△COB的面積
=
=14+13.5-12.5
=15.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時(shí),四邊形ABCD是菱形
B. 當(dāng)AC⊥BD時(shí),四邊形ABCD是菱形
C. 當(dāng)∠ABC=90°時(shí),四邊形ABCD是矩形
D. 當(dāng)AC=BD時(shí),四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新定義:關(guān)于x的一元二次方程a1(x﹣m)2+k=0與a2(x﹣m)2+k=0稱為“同族二次方程”.如2(x﹣3)2+4=0與3(x﹣3)2+4=0是“同族二次方程”.現(xiàn)有關(guān)于x的一元二次方程2(x﹣1)2+1=0與(a+2)x2+(b﹣4)x+8=0是“同族二次方程”,那么代數(shù)式ax2+bx+2023能取的最小值是( 。
A. 2016B. 2018C. 2023D. 2028
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù) y=ax2+bx+2 的圖象與 x 軸交于 A(﹣3,0),B(1,0)兩點(diǎn),與 y 軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的關(guān)系解析式 ,x 滿足什么值時(shí) y﹤0 ?
(2)點(diǎn) p 是直線 AC 上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn) P,使△ACP 面積最大?若存在,求出點(diǎn) P的坐標(biāo);若不存在,說(shuō)明理由
(3)點(diǎn) M 為拋物線上一動(dòng)點(diǎn),在 x 軸上是否存在點(diǎn) Q,使以 A、C、M、Q 為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn) Q 的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是王阿姨晚飯后步行的路程s(單位:m)與時(shí)間t(單位:min)的函數(shù)圖象,其中曲線段AB是以B為頂點(diǎn)的拋物線一部分.下列說(shuō)法不正確的是( )
A.25min~50min,王阿姨步行的路程為800m
B.線段CD的函數(shù)解析式為
C.5min~20min,王阿姨步行速度由慢到快
D.曲線段AB的函數(shù)解析式為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,解決材料后的問(wèn)題:
材料一:對(duì)于實(shí)數(shù)x、y,我們將x與y的“友好數(shù)”用f(x,y)表示,定義為:f(x)=,例如17與16的友好數(shù)為f(17,16)==.
材料二:對(duì)于實(shí)數(shù)x,用[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù),即滿足條件[x]≤x<[x]+1,例如:
[﹣1.5]=[﹣1.6]=﹣2,[0]=[0.7]=0,[2.2]=[2.7]=2,……
(1)由材料一知:x2+2與1的“友好數(shù)”可以用f(x2+2,1)表示,已知f(x2+2,1)=2,請(qǐng)求出x的值;
(2)已知[a﹣1]=﹣3,請(qǐng)求出實(shí)數(shù)a的取值范圍;
(3)已知實(shí)數(shù)x、m滿足條件x﹣2[x]=,且m≥2x+,請(qǐng)求f(x,m2﹣m)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將頂點(diǎn)為P(1,-2),且過(guò)原點(diǎn)的拋物線y的一部分沿x軸翻折并向右平移2個(gè)單位長(zhǎng)度,得到拋物線y1,其頂點(diǎn)為P1,然后將拋物線y1沿x軸翻折并向右平移2個(gè)單位長(zhǎng)度,得到拋物線y2,其頂點(diǎn)為P2;,如此進(jìn)行下去,直至得到拋物線y2019,則點(diǎn)P2019坐標(biāo)為 _______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的一元二次方程,給出下列說(shuō)法:①若,則方程必有兩個(gè)實(shí)數(shù)根;②若,則方程必有兩個(gè)實(shí)數(shù)根;③若,則方程有兩個(gè)不相等的實(shí)數(shù)根;④若,則方程一定沒(méi)有實(shí)數(shù)根.其中說(shuō)法正確的序號(hào)是( )
A. ①②③B. ①②④
C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式(利潤(rùn)=收入-成本);
(3)試說(shuō)明(2)中總利潤(rùn)W隨售價(jià)x的變化而變化的情況,并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com