【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點(diǎn)C,將一個(gè)三角板的直角頂點(diǎn)與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長(zhǎng)線)相交于點(diǎn)D,E.
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(shí)(如圖①),易證:OD+OE=OC;
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時(shí),即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.
【答案】圖②中OD+OE=OC成立.證明見解析;圖③不成立,有數(shù)量關(guān)系:OE-OD=OC
【解析】試題分析:當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時(shí),易得△CKD≌△CHE,進(jìn)而可得出證明;判斷出結(jié)果.解此題的關(guān)鍵是根據(jù)題意找到全等三角形或等價(jià)關(guān)系,進(jìn)而得出OC與OD、OE的關(guān)系;最后轉(zhuǎn)化得到結(jié)論.
試題解析:圖②中OD+OE=OC成立.
證明:過點(diǎn)C分別作OA,OB的垂線,垂足分別為P,Q.
有△CPD≌△CQE,
∴DP=EQ,
∵OP=OD+DP,OQ=OE-EQ,
又∵OP+OQ=OC,
即OD+DP+OE-EQ=OC,
∴OD+OE=OC.
圖③不成立,
有數(shù)量關(guān)系:OE-OD=OC
過點(diǎn)C分別作CK⊥OA,
CH⊥OB,
∵OC為∠AOB的角平分線,且CK⊥OA,CH⊥OB,
∴CK=CH,∠CKD=∠CHE=90°,
又∵∠KCD與∠HCE都為旋轉(zhuǎn)角,
∴∠KCD=∠HCE,
∴△CKD≌△CHE,
∴DK=EH,
∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,
由(1)知:OH+OK=OC,
∴OD,OE,OC滿足OE-OD=OC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=20 cm,P,Q,M,N分別從A,B,C,D出發(fā),沿AD,BC,CB,DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí),運(yùn)動(dòng)即停止.已知在相同時(shí)間內(nèi),若BQ=x cm(x≠0),則AP=2x cm,CM=3x cm,DN=x2 cm,
(1)當(dāng)x為何值時(shí),點(diǎn)P,N重合;
(2)當(dāng)x為何值是,以P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BE∥DF的是( 。
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,BC=4,Q為AB邊的中點(diǎn),P為CD邊上的動(dòng)點(diǎn),且△AQP是腰長(zhǎng)為5的等腰三角形,則CP的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè)比賽結(jié)束后,隨機(jī)抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽査結(jié)果繪制的統(tǒng)計(jì)圖的一部分根據(jù)信息解決下列問題:
(1)樣本容量是 ,a= ,b= ;
(2)在扇形統(tǒng)計(jì)圖中,“D組”所對(duì)應(yīng)的圓心角的度數(shù)為 ;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)該校共有1200名學(xué)生,如果聽寫正確的個(gè)數(shù)少于16個(gè)定為不合格,請(qǐng)你估計(jì)這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別,
(1)隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市公交公司為應(yīng)對(duì)春運(yùn)期間的人流高峰,計(jì)劃購(gòu)買A、B兩種型號(hào)的公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬元;若購(gòu)買A型公交車2輛,B型公交車3輛,共需650萬元,
(1)試問該公交公司計(jì)劃購(gòu)買A型和B型公交車每輛各需多少萬元?
(2)若該公司預(yù)計(jì)在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案的總費(fèi)用W最少?最少總費(fèi)用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊三角形的高為6,在這個(gè)三角形所在的平面內(nèi)有一個(gè)點(diǎn),若點(diǎn)到的距離是1,點(diǎn)到的距離是2,則點(diǎn)到的最小距離與最大距離分別是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖①,拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(,0),B(3,0),與y軸交于點(diǎn)C,連接BC.
(1)求拋物線的表達(dá)式;
(2)拋物線上是否存在點(diǎn)M,使得△MBC的面積與△OBC的面積相等,若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)點(diǎn)D(2,m)在第一象限的拋物線上,連接BD.在對(duì)稱軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com