【題目】如圖1,直線ABx軸、y軸分別交于點(diǎn)A3,0)、B,動(dòng)點(diǎn)P從原點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A立即停止.點(diǎn)C(﹣10),以P為直角頂點(diǎn),PC為直角邊向x軸上方作等腰RtPQC,PQCAOB重疊部分面積為S,點(diǎn)P運(yùn)動(dòng)時(shí)間為t(秒),S關(guān)于t的函數(shù)圖象如圖2所示(其中0≤t,t≤3時(shí),函數(shù)解析式不同).

1)當(dāng)t時(shí),S的值為   ;

2)求直線AB的解析式;

3)求S關(guān)于t的解析式,并寫(xiě)出t的取值范圍.

【答案】1;(2y=﹣x+4;(3

【解析】

1)由圖2可知:當(dāng)t時(shí),QAB上,畫(huà)圖1,根據(jù)面積差可得結(jié)論;

2)先根據(jù)平行相似計(jì)算OB的長(zhǎng),得點(diǎn)B的坐標(biāo),利用待定系數(shù)法可得結(jié)論;

3)分兩種情況:0≤t≤,≤t≤3時(shí),分別根據(jù)面積差可得對(duì)應(yīng)解析式.

解:(1)當(dāng)QAB上時(shí),如圖1

由題意得:OP,OC1,

PCPQ1+,

∵△PQC和△COD都是等腰直角三角形,

SSPCQSCOD 11

故答案為:;

2)∵A3,0),

OA3,

AP3,

PQOB

∴△AQP∽△ABO,

,

,OB4

B0,4),

設(shè)直線AB的解析式為:ykx+b,

A30)、B04)代入得:,

解得:,

∴直線AB的解析式為:y=﹣x+4;

3)由題意得:OPt,

當(dāng)0≤t≤時(shí),如圖2,

PQC與△AOB重疊部分是梯形ODQP

SSPCQSCOD(t+1)2-×1×1=t2+t;

當(dāng)≤t≤3時(shí),如圖3

PQC與△AOB重疊部分是五邊形ODEFP,

OPt,APPF3t

FQt+1﹣(3t)=2t2,

∵∠Q=∠EFQ=∠AFP45°

∴∠FEQ90°,

EQEF,

SSPCQSCODSEFQt2+t=﹣+3t1

綜上,S關(guān)于t的解析式為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°24°的桌面有利于學(xué)生保持軀體自然姿勢(shì).根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計(jì)圖如圖1,AB可繞點(diǎn)A旋轉(zhuǎn),在點(diǎn)C處安裝一根可旋轉(zhuǎn)的支撐臂CDAC30 cm.

(1)如圖2,當(dāng)∠BAC24°時(shí),CDAB,求支撐臂CD的長(zhǎng);

(2)如圖3,當(dāng)∠BAC12°時(shí),求AD的長(zhǎng).(結(jié)果保留根號(hào))

(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,分別以邊BC,CD作等腰△BCF,CDE,使BC=BF,CD=DE,CBF=CDE,連接AF,AE.

(1)求證:△ABF≌△EDA;

(2)延長(zhǎng)ABCF相交于G,若AFAE,求證BFBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖8×8正方形網(wǎng)格中,點(diǎn)A、B、CO都為格點(diǎn).

(1)利用位似作圖的方法,以點(diǎn)O為位似中心,可將格點(diǎn)三角形ABC擴(kuò)大為原來(lái)的2倍.請(qǐng)你在網(wǎng)格中完成以上的作圖(點(diǎn)AB、C的對(duì)應(yīng)點(diǎn)分別用A′、B′、C′表示);

(2)當(dāng)以點(diǎn)O為原點(diǎn)建立平面坐標(biāo)系后,點(diǎn)C的坐標(biāo)為(﹣1,2),則A′、B′、C′三點(diǎn)的坐標(biāo)分別為:A′:   B′:   C′:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB9O°,CD是斜邊AB上的中線,過(guò)點(diǎn)AAECD,AE分別與CD、CB交于HE兩點(diǎn),且AH2CH,若AB2,則BE的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視節(jié)目奔跑吧兄弟播出后深受中小學(xué)生的喜愛(ài),小剛想知道大家最喜歡哪位兄弟,于是在本校隨機(jī)抽取了一部分學(xué)生進(jìn)行抽查(每人只能選一個(gè)自己最喜歡的兄弟),將調(diào)查結(jié)果進(jìn)行了整理后繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中提供的信息解答下列問(wèn)題:

1)本次被調(diào)查的學(xué)生有_______.

2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整.

3)若從3名喜歡李晨的學(xué)生和2名喜歡的學(xué)生中隨機(jī)抽取兩人參加文體活動(dòng),用樹(shù)狀圖或列表法求出兩人都是喜歡李晨的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解初三年級(jí)1000名學(xué)生的身體健康情況,從該年級(jí)隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A39.546.5;B46.553.5C53.560.5;D60.567.5;E67.574.5),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.

解答下列問(wèn)題:

1)這次抽樣調(diào)查的樣本容量是 ,并補(bǔ)全頻數(shù)分布直方圖;

2C組學(xué)生的頻率為 ,在扇形統(tǒng)計(jì)圖中D組的圓心角是 度;

3)請(qǐng)你估計(jì)該校初三年級(jí)體重超過(guò)60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】廣安市紅色旅游資源豐富,無(wú)論是小平故里行,還是華鎣山上游,都吸引了不少游客。2014~2018年旅游收入不斷增長(zhǎng),同比增速分別為:17.3%,14.7%,17.3%16.5%,19.1%,關(guān)于這組數(shù)據(jù),下列說(shuō)法正確的是( ).

A. 中位數(shù)是14.7%B. 眾數(shù)是17.3%

C. 平均數(shù)是17.98%D. 方差是0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三(1班部分同學(xué)接受一次內(nèi)容為最適合自己的考前減壓方式的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類(lèi),并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.

1)初三(1)班接受調(diào)查的同學(xué)共有多少名;

2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);

3)若喜歡交流談心5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫(xiě)出選取的兩名同學(xué)都是女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案