【題目】如圖,已知四邊形ABCD為正方形,AB=2,點(diǎn)E為對角線AC上一動點(diǎn),連接DE,過點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE,EF為鄰邊作矩形DEFG,連接CG.
(1)求證:矩形DEFG是正方形;
(2)探究:CE+CG的值是否為定值?若是,請求出這個定值;若不是,請說明理由;
(3)設(shè)AE=x,四邊形DEFG的面積為S,求出S與x的函數(shù)關(guān)系式.
【答案】(1)、證明過程見解析;(2)、4;證明過程見解析;(3)、S==x2﹣4x+8
【解析】
試題分析:(1)、作出輔助線,得到EN=EM,然后判斷∠DEN=∠FEM,得到△DEM≌△FEM,則有DE=EF即可;(2)、同(1)的方法判斷出△ADE≌△CDG得到CG=AE,即:CE+CG=CE+AE=AC=4;(3)、由正方形的性質(zhì)得到∠DAE=45°,表示出AM=EM,再表示出DM,再用勾股定理求出DE2.
試題解析:(1)、如圖,作EM⊥BC,EN⊥CD
∴∠MEN=90°, ∵點(diǎn)E是正方形ABCD對角線上的點(diǎn), ∴EM=EN, ∵∠DEF=90°, ∴∠DEN=∠MEF,
在△DEM和△FEM中,, ∴△DEM≌△FEM, ∴EF=DE, ∵四邊形DEFG是矩形,
∴矩形DEFG是正方形;
(2)、CE+CG的值是定值,定值為4, ∵正方形DEFG和正方形ABCD, ∴DE=DG,AD=DC,
∵∠CDG+∠CDE=∠ADE+∠CDE=90°, ∴∠CDG=∠ADE, ∴△ADE≌△CDG,
∴AE=CE. ∴CE+CG=CE+AE=AC=AB=×2=4,
(3)、如圖,
∵正方形ABCD中,AB=2, ∴AC=4, 過點(diǎn)E作EM⊥AD,∴∠DAE=45°, ∵AE=x,
∴AM=EM=x, 在Rt△DME中,DM=AD﹣AM=2﹣x,EM=x,
根據(jù)勾股定理得,DE2=DM2+EM2=(2﹣x)2+(x)2=x2﹣4x+8,
∵四邊形DEFG為正方形, ∴S=S正方形DEFG=DE2=x2﹣4x+8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)統(tǒng)計(jì),2016年除夕夜觀看春晚直播的觀眾約達(dá)10.3億人,用科學(xué)記數(shù)法表示10.3億正確的是( )
A.1.03×109
B.1.03×1010
C.10.3×109
D.103×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進(jìn)甲、乙兩種商品共180件,其進(jìn)價和售價如表:(注:獲利=售價﹣進(jìn)價)
甲 | 乙 | |
進(jìn)價(元/件) | 14 | 35 |
售價(元/件) | 20 | 43 |
(1)若商店計(jì)劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應(yīng)分別購進(jìn)多少件?
(2)若商店計(jì)劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的BC邊上的一點(diǎn),∠B =40°,∠ADC=80°.
(1)求證:AD=BD;
(2)若∠BAC=70°,判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x≠0時,下列運(yùn)算不正確的是( )
A.a2a=a3
B.(﹣a3)2=a6
C.(3a2)2=9a4
D.a3÷a3=a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅和小明在研究一個數(shù)學(xué)問題:已知AB∥CD,AB和CD都不經(jīng)過點(diǎn)E,探索∠E與∠A,∠C的數(shù)量關(guān)系.
(1)發(fā)現(xiàn):在圖1中,小紅和小明都發(fā)現(xiàn):∠AEC=∠A+∠C; 小紅是這樣證明的:如圖7過點(diǎn)E作EQ∥AB.
∴∠AEQ=∠A()
∵EQ∥AB,AB∥CD.
∴EQ∥CD()
∴∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C 即∠AEC=∠A+∠C.
小明是這樣證明的:如圖7過點(diǎn)E作EQ∥AB∥CD.
∴∠AEQ=∠A,∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C
請?jiān)谏厦孀C明過程的橫線上,填寫依據(jù):
兩人的證明過程中,完全正確的是 .
(2)嘗試: ①在圖2中,若∠A=110°,∠C=130°,則∠E的度數(shù)為;
②在圖3中,若∠A=20°,∠C=50°,則∠E的度數(shù)為 .
(3)探索: 裝置圖4中,探索∠E與∠A,∠C的數(shù)量關(guān)系,并說明理由.
(4)猜想: 如圖5,∠B、∠D、∠E、∠F、∠G之間有什么關(guān)系?(直接寫出結(jié)論)
(5)如圖6,你可以得到什么結(jié)論?(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)2,x,8,4,2的平均數(shù)是6,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( 。
A.8,2B.3,2C.4,2D.6,8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com