【題目】.如圖,一條生產(chǎn)線的流水線上依次有5個機器人,它們站立的位置在數(shù)軸上依次用點A1A2,A3A4,A5表示.

1)若原點是零件的供應點,5個機器人分別到供應點取貨的總路程是多少?

2)若將零件的供應點改在A1,A3,A5中的其中一處,并使得5個機器人分別到達供應點取貨的總路程最短,你認為應該在哪個點上?通過計算說明理由.

【答案】(1) 5個機器人分別到達供應點取貨的總路程是12;(2)當零件的供應點在A3時總路程最短,此時總路程為11

【解析】

1)分別求出每段的長度,繼而相加即可.

2)分別計算出零件的供應點改在A1A3,A5時,5個機器人分別到達供應點取貨的總路程,比較大小即可確定.

解:(1|-4|+|-3|+|-1|+|1|+|3|=12

5個機器人分別到達供應點取貨的總路程是12
2)當零件的供應點在A1時,總路程=1+3+5+7=16

當零件的供應點在A3時,總路程=3+2+2+4=11

當零件的供應點在A5時,總路程=7+6+4+2=19

∴當零件的供應點在A3時總路程最短,此時總路程為11

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形中,,動點、分別從點、同時出發(fā),點2厘米/秒的速度向終點移動,點1厘米/秒的速度向移動,當有一點到達終點時,另一點也停止運動.設運動的時間為秒,當________時,以點、為頂點的三角形是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)圖中給出的數(shù)軸解答問題:

1)請你根據(jù)圖中A,B兩點的位置,分別寫出他們所表示的有理數(shù)為      ;

2)觀察數(shù)軸,與點A的距離為4的點表示的數(shù)是      

3)如果將數(shù)軸折疊,使得點A與表示﹣2的點重合,則點B與表示數(shù)      的點重合;

4)如果數(shù)軸上M,N兩點之間的距離為2020MN的左側),且M,N兩點經(jīng)過(3)中折疊后互相重合,則M,N兩點所表示的數(shù)分別是    ,    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某天一個巡警騎摩托車在一條南北大道上巡邏,他從崗亭出發(fā),規(guī)定崗亭為原點,向北為正,這段時間行駛記錄如下(單位:千米) +10-9,+7,-15+6,-14,+4,-2

1最后停留的地方在崗亭的哪個方向?距離崗亭多遠?

2)若摩托車行駛,每千米耗油0.06升,每升6.2元,且最后返回崗亭這一天耗油共需多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,對于任意的三個點A、B、C,給出如下定義:若矩形的任何一條邊均與某條坐標軸平行,且AB,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,BC的“三點矩形”.在點A,B,C的所有“三點矩形”中,若存在面積最小的矩形,則稱該矩形為點A,BC的“迷你三點矩形”.

如圖1,矩形DEFG,矩形IJCH都是點AB,C的“三點矩形”,矩形IJCH是點A,BC的“迷你三點矩形”.

如圖2,已知M(4,1)N(-2,3),點P(m,n)

1)①若m1n4,則點M,NP的“迷你三點矩形”的周長為 ,面積為

②若m1,點MN,P的“迷你三點矩形”的面積為24,求n的值;

2)若點P在直線y-2x4上.當點M,N,P的“迷你三點矩形”為正方形時,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把具有某種規(guī)律的一列數(shù):1,2,3,4,5,6,...,排列成下面的陣形:

........

探索下列事件:

1)第10行的第1個數(shù)是什么數(shù)?

2)數(shù)字2019前面是負號還是正號?在第幾行?第幾列?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(﹣81+(﹣29

2)﹣7+136+20

31+(﹣)﹣(﹣)﹣

4)﹣0.5﹣(﹣3+2.75﹣(+7

5)(+16+(﹣3)﹣|8|+|12|﹣(﹣5

6)(﹣0.25)×(﹣2)×(﹣)×(+0.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:

⑴ 請你根據(jù)圖中A、B兩點的位置,分別寫出它們所表示的有理數(shù)A B

⑵ 觀察數(shù)軸,與點A的距離為4的點表示的數(shù)是:

⑶ 若將數(shù)軸折疊,使得A點與-3表示的點重合,則B點與數(shù) 表示的點重合;

⑷ 若數(shù)軸上M、N兩點之間的距離為2018(MN的左側),且MN兩點經(jīng)過(3)中折疊后互相重合,則MN兩點表示的數(shù)分別是:M: N:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AMBN,CBN上一點, BD平分∠ABN且過AC的中點O,交AM于點D,DEBD,交BN于點E

1)求證:ADO≌△CBO

2)求證:四邊形ABCD是菱形.

3)若DE = AB = 2,求菱形ABCD的面積.

查看答案和解析>>

同步練習冊答案