【題目】已知拋物線的頂點(diǎn)坐標(biāo)是(-1,-2),且經(jīng)過點(diǎn)(0,1)
(1)求這個(gè)二次函數(shù)的解析式;
(2)寫出該拋物線經(jīng)過怎樣的平移后頂點(diǎn)為原點(diǎn).
【答案】(1)y=3x2+6x+1;(2)先向右平移1個(gè)單位,再向上平移2個(gè)單位.
【解析】
(1)根據(jù)拋物線的頂點(diǎn)坐標(biāo)及函數(shù)經(jīng)過點(diǎn)(0,1),利用待定系數(shù)法求解即可.
(2)根據(jù)拋物線的頂點(diǎn)坐標(biāo),即可解決問題;
(1)由題意設(shè)拋物線的解析式為y=a(x+1)2-2,
把(0,1)代入得到,a=3
故拋物線對(duì)應(yīng)的函數(shù)的解析式為y=3x2+6x+1;
(2)將拋物線y=3x2+6x+1先向右平移1個(gè)單位,再向上平移2個(gè)單位,平移后的拋物線頂點(diǎn)為原點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題不一定成立的是( )
A.斜邊與一條直角邊對(duì)應(yīng)成比例的兩個(gè)直角三角形相似;
B.兩個(gè)等腰直角三角形相似;
C.兩邊對(duì)應(yīng)成比例且有一個(gè)角相等的兩個(gè)三角形相似;
D.各有一個(gè)角等于95°的兩個(gè)等腰三角形相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=x2-4x-5與x軸分別交于A、B(A在B的左邊),與y軸交于點(diǎn)C,直線AP與y軸正半軸交于點(diǎn)M,交拋物線于點(diǎn)P,直線AQ與y軸負(fù)半軸交于點(diǎn)N,交拋物線于點(diǎn)Q,且OM=ON,過P、Q作直線l
(1) 探究與猜想:
① 取點(diǎn)M(0,1),直接寫出直線l的解析式
取點(diǎn)M(0,2),直接寫出直線l的解析式
② 猜想:
我們猜想直線l的解析式y(tǒng)=kx+b中,k總為定值,定值k為__________,請(qǐng)取M的縱坐標(biāo)為n,驗(yàn)證你的猜想
(2) 如圖2,連接BP、BQ.若△ABP的面積等于△ABQ的面積的3倍,試求出直線l的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù). 小明的思路是:過P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為度;
(2)問題遷移:如圖2,AB∥CD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)P在B、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問∠APC與α、β之間有何數(shù)量關(guān)系?請(qǐng)說明理由;
(3)在(2)的條件下,如果點(diǎn)P在B、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請(qǐng)直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程(x-1)(x+3)=12化為ax2+bx+c=0的形式后,a、b、c的值為( 。
A.1、2、-15
B.1、-2、-15
C.-1、-2、-15
D.-1、2、-15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)正數(shù)比較大小,絕對(duì)值大的數(shù)_____;兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的數(shù)反而_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com