【題目】如圖,∠CAB=∠ABD=50°,P為AB中點,點M為射線AC上(不與點A重合)的任意一點,連接MP,并使MP的延長線交射線BD于點N,設(shè)∠BPN=α.連接MB,NA.
(1)求證:四邊形MBNA為平行四邊形;
(2)當(dāng)α=____°時,四邊形MBNA為矩形;
(3)當(dāng)α=_____°時,四邊形MBNA為菱形;
(4)四邊形MBNA可能是正方形嗎?_____(回答“可能”或“不可能”)
【答案】(1)證明見解析;(2)80;(3)90;(4)不可能.
【解析】
(1)由“AAS”可證△APM≌△BPN,可得AM=BN,即可得結(jié)論;
(2)由矩形的性質(zhì)和三角形的內(nèi)角和定理可求解;
(3)由菱形的性質(zhì)可求解;
(4)由正方形的性質(zhì)可求解.
(1) 證明:∵P為AB中點,
∴AP=BP
∵∠CAB=∠ABD=50°,
∴AM∥BN
∴∠AMP=∠BNP,且AP=BP,∠CAB=∠ABD=50°,
∴△APM≌△BPN(AAS)
∴AM=BN,且AM∥BN
∴四邊形MBNA為平行四邊形;
(2)若四邊形MBNA為矩形
∴BP=AP=MP=NP
∴∠ABN=∠MNB=50°
∴α=180°﹣50°﹣50°=80°
故答案為:80
(3)若四邊形MBNA為菱形
∴AB⊥MN
∴α=90°
故答案為:90
(4)若四邊形MBNA為正方形
∴∠ABD=45°≠50°
∴四邊形MBNA不可能為正方形
故答案為:不可能
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在以AB為直徑的⊙O上,BD與過點C的切線垂直于點D,BD與⊙O交于點E.
(1)求證:BC平分∠DBA;
(2)連接AE和AC,若cos∠ABD=,OA=m,請寫出求四邊形AEDC面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某建設(shè)工地一個工程有大量的沙石需要運輸.建設(shè)公司車隊有載重量為8噸和10噸的卡車共14輛,全部車輛一次能運輸128噸沙石.
(1)求建設(shè)公司車隊載重量為8噸和10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,車隊需要一次運輸沙石超過190噸,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共7輛,車隊最多新購買載重量為8噸的卡車多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長,中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,學(xué)校德育處隨機(jī)抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
成績x(分)分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
頻數(shù)分布直方圖
根據(jù)所給的信息,回答下列問題:
(1)m=________;n=________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會落在________分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的2000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經(jīng)
了解得到以下信息(如表):
工程隊 | 每天修路的長度(米) | 單獨完成所需天數(shù)(天) | 每天所需費用(元) |
甲隊 | 30 | n | 600 |
乙隊 | m | n﹣14 | 1160 |
(1)甲隊單獨完成這項工程所需天數(shù)n= ,乙隊每天修路的長度m= (米);
(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).
①當(dāng)x=90時,求出乙隊修路的天數(shù);
②求y與x之間的函數(shù)關(guān)系式(不用寫出x的取值范圍);
③若總費用不超過22800元,求甲隊至少先修了多少米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,動點M,N分別從A,C同時向B,D勻速移動,且兩點的運動速度相同,當(dāng)動點M到達(dá)B點時,M,N同時停止運動,過點N作NP⊥CD,交BD于P點,當(dāng)△BMP為等腰三角形時,AM=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,以CD為底邊在正方形外側(cè)作等腰△CDE,連接BE與對角線AC交于點P、與CD交于點H,連接PD.
(1)如圖1,當(dāng)∠DEC=60°時,求證:PA=PE;
(2)如圖2,當(dāng)∠DEC=90°時,
①求tan∠EBC的值;②求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,AB=AC,AD為BC邊上的高,E為AC中點.
(1)如圖1,過點C作CF⊥AB于F點,連接EF.若∠BAD=20°,求∠AFE的度數(shù);
(2)若M為線段BD上的動點(點M與點D不重合),過點C作CN⊥AM于N點,射線EN,AB交于P點.
①依題意將圖2補(bǔ)全;
②小宇通過觀察、實驗,提出猜想:在點M運動的過程中,始終有∠APE=2∠MAD.
小宇把這個猜想與同學(xué)們進(jìn)行討論,形成了證明該猜想的幾種想法:
想法1:連接DE,要證∠APE=2∠MAD,只需證∠PED=2∠MAD.
想法2:設(shè)∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通過角度計算得∠APE=2α.
想法3:在NE上取點Q,使∠NAQ=2∠MAD,要證∠APE=2∠MAD,只需證△NAQ∽△APQ.……
請你參考上面的想法,幫助小宇證明∠APE =2∠MAD.(一種方法即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級在區(qū)體育檢測前進(jìn)行最后一次摸底考試,從中隨機(jī)抽取了50名男生的1000米測試成績,根據(jù)評分標(biāo)準(zhǔn)按A、B、C、D四個等級進(jìn)行統(tǒng)計,并繪制成下面的扇形圖和統(tǒng)計表:
請你根據(jù)以上圖表提供的信息,解答下列問題:
(1)在統(tǒng)計表中x= ,y= ,m= ,n= ;
(2)在扇形圖中,A等級所對應(yīng)的圓心角是 度;
(3)在50名學(xué)生的1000米跑成績(得分)中,中位數(shù)是 ,眾數(shù)是 ;
(4)如果該校九年級男生共有200名,那么請你估計這200名男生中成績等級沒有達(dá)到A或B的共有 人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com