【題目】如圖,直線y=kx+b交x軸于點A(1,0),與雙曲線y=-(x<0)交于點B(-1,a).
(1)求直線AB的解析式;
(2)若點B左側一直線x=m與直線AB交于點C,與雙曲線交于點D(C、D兩點不重合),當BC=BD時,求m的值.
【答案】(1) y=-x+1 ;(2) m=-2.
【解析】分析:(1)由點B(-1,a)在雙曲線上,可得B的坐標.再由直線y=kx+b過點A、B,可得直線AB的解析式.
(2)過點B作BE⊥CD于點E.由等腰三角形的性質得到DE=CE=CD,由C(m,-m+1),D(m,-),得到CD=-m+1+,故(-m+1+)-=2,解方程即可得到結論.
詳解:(1)∵點B(-1,a)在雙曲線上,∴a=2,∴B(-1,2).
又∵直線y=kx+b過點A、B,故得:,
解得:,∴直線AB的解析式為:y=-x+1 .
(2)過點B作BE⊥CD于點E.
∵BC=BD, ∴DE=CE=CD,
由題意可知,C(m,-m+1),D(m,-),
∴CD=-m+1+,
∴(-m+1+)-=2,
∴m=-1或-2.
又∵m<-1,∴m=-2.
科目:初中數(shù)學 來源: 題型:
【題目】完成下列填空:
(1)如圖,為直角,,且平分平分,求的度數(shù).
(2)如圖,,且平分平分.直接寫出的度數(shù).
解:(1)因為,所以 ①
因為平分,所以 ② ③
因為平分,所以 ④ ⑤
所以 ⑥
(2) ⑦
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個判斷:①當x>0時,y>0;②若a=-1,則b=4;③拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+x2>2,則y1> y2;④點C關于拋物線對稱軸的對稱點為E,點G,F分別在x軸和y軸上,當m=2時,四邊形EDFG周長的最小值為.其中正確判斷的序號是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BE⊥AC于點F,交邊AD于點E,連結DF,若點E為AD的中點,則DF的長為__________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農戶承包荒山若干畝,種果樹2000棵.今年水果總產量為18000千克,此水果在市場上每千克售元,在果園每千克售元.該農戶將水果拉到市場出售平均每天出售1000千克,需8人幫忙,每人每天付工資25元,農用車運費及其他各項稅費平均每天100元.
(1)分別用表示兩種方式出售水果的收入.
(2)若元,元,且兩種方式都在相同的時間內售完全部水果,請你通過計算說明選擇哪種出售方式較好.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=2,D是AB的中點,直線BM∥AC,E是邊CA延長線上一點,將△EDC沿CD翻折得到△E′DC,射線DE′交直線BM于點F.
(1)如圖1,當點E′與點F重合時,求證:四邊形ABE′C為平行四邊形;
(2)如圖2,延長ED交線段BF于點G.
①設BG=x,GF=y,求y與x的函數(shù)關系式;
②若△DFG的面積為3,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=9,DF=2FC,則BC=____.(結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com