【題目】如圖,MN是⊙O的直徑,MN=10,點(diǎn)A在⊙O上,∠AMN=30°,B為弧AN的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為__________.

【答案】

【解析】分析:本題過B作關(guān)于直線MN的對(duì)稱點(diǎn)B′,連接AB′,由軸對(duì)稱的性質(zhì)可知AB′即為PA+PB的最小值,由同弧所對(duì)的圓心角和圓周角的性質(zhì)可知∠AON=2∠AMN=2×30°=60°,由對(duì)稱的性質(zhì)可知∠B′ON=∠BON=30°,即可求出∠AOB′的度數(shù),再由勾股定理即可求解.

解析: 作點(diǎn)B關(guān)于MN的對(duì)稱點(diǎn)C,連接AC交MN于點(diǎn)P,則P點(diǎn)就是所求作的點(diǎn).

此時(shí)PA+PB最小,且等于AC的長.連接OA,OC,∵∠AMN=30°,∴∠AON=60°,∴弧AN的度數(shù)是60°,則弧BN的度數(shù)是30°,根據(jù)垂徑定理得弧CN的度數(shù)是30°,則∠AOC=90°,又OA=OC=5,則AC=.

故答案為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如下表所示:

租金(單位:元/臺(tái)時(shí))

挖掘土石方量(單位:m3/臺(tái)時(shí))

甲型挖掘機(jī)

100

60

乙型挖掘機(jī)

120

80

1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?

2)如果每小時(shí)支付的租金不超過850元,又恰好完成每小時(shí)的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=﹣2,則x22x的值為( 。

A.8B.0C.8D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為(
A.2.5×107
B.2.5×106
C.25×107
D.0.25×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m,n是一元二次方程x2﹣4x﹣3=0的兩個(gè)實(shí)數(shù)根,則代數(shù)式(m+1)(n+1)的值為(
A.﹣6
B.﹣2
C.0
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=﹣x2+2x4,當(dāng)﹣1x2時(shí),y的取值范圍是( 。

A.7y<﹣4B.7y≤3C.7≤y<﹣3D.4y≤3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年是襄陽“創(chuàng)建文明城市”工作的第二年,為了更好地做好“創(chuàng)建文明城市”工作,市教育局相關(guān)部門對(duì)某中學(xué)學(xué)生“創(chuàng)文”的知曉率,采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“非常了解”, “比校了解”, “基本了解”,和“不了解”四個(gè)等級(jí).小輝根據(jù)調(diào)查結(jié)果繪制了如圖所示的統(tǒng)計(jì)圖,請(qǐng)根據(jù)提供的信息回答問題:

(1)本次調(diào)查中,樣本容量是_________;

(2)扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)的圓心角的度數(shù)是_______;在該校2000名學(xué)生中隨機(jī)提問一名學(xué)生,對(duì)“創(chuàng)文”不了解的概率估計(jì)值為________

(3)請(qǐng)補(bǔ)全頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多邊形的每個(gè)內(nèi)角都是120°,那么這個(gè)多邊形的邊數(shù)是_________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線與坐標(biāo)軸交于點(diǎn)A,C,經(jīng)過點(diǎn)A,C的拋物線y=ax2+bx-3與x軸交于點(diǎn)B(2,0).

(1)求拋物線的解析式;

(2)點(diǎn)D是拋物線在第三象限圖象上的動(dòng)點(diǎn),是否存在點(diǎn)D,使得△DAC的面積最大,若存在,請(qǐng)求這個(gè)最大值并求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)過點(diǎn)D作DEx軸于E,交AC于F,若AC恰好將△ADE的面積分成1:4兩部分,請(qǐng)求出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案